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Other sources of data 
and charts

• Anesthesia  Quality Institute: Anesthesia in the 
United States, 2009

Excel graphics

• National Resident Matching Program, Data and 
Report 2009

Graphics are not in Excel



National Resident Matching Program



Edward Tufte, The Visual Display of 
Quantitative Information: 
the only worse design than a pie chart is 
several of them

National Resident Matching Program



National Resident 
Matching Program

-redone-



Evaluating Competing 
Designs

Evaluate perceptual strengths and weaknesses
• usually we are not interested in exact quantities

• ... But ... use accuracy as measure

Cleveland & McGill (Science, 1985):

	
 A graphical form that involves elementary perceptual 
tasks that lead to more accurate judgments than 
another graphical form (with the same quantitative 
information) will result in a better organization and 
increase the chances of correct perception of patterns 
and behavior.
 



Example: Bar vs Pie

Area is proportional to value

comparison of angles, 
curve length

comparison of widths, 
positions along a common scale
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What tasks are involved in comparisons?
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What tasks are involved in comparisons?



Pies or Bars?

small 
user studies
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Positions along a common scale
Determine the angles for slices 1 to 6 as
accurately as possible

Determine the width for bins A to F as 
accurately as possible
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Positions along a common scale
Determine the angles for slices 1 to 6 as
accurately as possible

Determine the width for bins A to F as 
accurately as possible
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Positions along a common scale
Determine the angles for slices 1 to 6 as
accurately as possible

Determine the width for bins A to F as 
accurately as possible
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B 23
C 14
D 24
E 20
F 7

Positions along a common scale
Determine the angles for slices 1 to 6 as
accurately as possible

Determine the width for bins A to F as 
accurately as possible
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A 12
B 23
C 14
D 24
E 20
F 7

write down (absolute) 
differences between true 
values and your estimates

Positions along a common scale
Determine the angles for slices 1 to 6 as
accurately as possible

Determine the width for bins A to F as 
accurately as possible



Show of hands: 
Sum of Errors

• 5 or less?

• 3 or less?

• Accurate?



Determine the angles for slices 1 to 6 as
accurately as possible

Determine the percentage for slices A 
to F as accurately as possible

Angle comparisons
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Determine the angles for slices 1 to 6 as
accurately as possible

Determine the percentage for slices A 
to F as accurately as possible

Angle comparisons

!"#$

!"

#"

$"

%"

&"

'"



Determine the angles for slices 1 to 6 as
accurately as possible

Determine the percentage for slices A 
to F as accurately as possible

Angle comparisons
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Slice Value
A 29
B 13
C 7
D 18
E 10
F 24

Determine the angles for slices 1 to 6 as
accurately as possible

Determine the percentage for slices A 
to F as accurately as possible

Angle comparisons
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Slice Value
A 29
B 13
C 7
D 18
E 10
F 24

write down differences between 
true values and your estimates

Determine the angles for slices 1 to 6 as
accurately as possible

Determine the percentage for slices A 
to F as accurately as possible

Angle comparisons
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Show of hands: 
Sum of Errors

• Ran out of time?

• 5 or less?

• 3 or less?

• Accurate?



Show of hands: 
Sum of Errors

• Ran out of time?

• 5 or less?

• 3 or less?

• Accurate?

Barcharts give us more accurate results, faster ...



Fact or Artifact?

• Is what we see actually there? (or is it just 
random fluctuation in the data)

• Lineup protocol allows us to quantify 
significance of visual findings



Lineup Example

Which plot is the most different?



Lineup Example
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Lineups
• data plot is placed randomly among decoys;  

“police lineup”

• are we able to still identify the data? 
… yes? - that’s evidence that the data is different 
from the decoy plots

• Probability to identify data ‘accidentally’: 1 in m

• quantify difference as visual p-value:
Pr(at least x out of n observers identified the data)

P(X ≥ 5) = 

Graphical
Inference

Heike
Hofmann

Outline

My
Research
Area

Motivation

Visual
Testing
Protocol

Simulation
study

Power
Analysis

Comparing
designs

Conclusions

Visual p-value

Visual p-value

Assume we have N independent observers. Let X be number of
observers who pick the data plot from a lineup of size m.

Under null hypothesis X ∼ BN,1/m, and data plot is not
distinguishable from null plots

If k observers pick the data plot from the lineup, we get an
estimate of a visual p-value as

p− value = P (X ≥ k) =
N�

i=k

�
N

i

��
1

m

�i�
1− 1

m

�N−i

N k p-value
30 5 0.0349
35 6 0.0235
40 6 0.0454

11 / 23
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P(X ≥ 5) ≤ 10-4



Power of a design

• Premise: given a choice of plot designs, that 
design is better that makes it the easiest for an 
observer to identify the signal

• Power: Pr(pick data plot from lineup)



Power of a design

• Premise: given a choice of plot designs, that 
design is better that makes it the easiest for an 
observer to identify the signal

• Power: Pr(pick data plot from lineup)

5 out of 9 people picked first example: 
Power is 5/9



Compare Designs

• One data set, two designs:
n1 observers evaluate design I,  x1 identify data
n2 observers evaluate design 2, x2 identify data

• power 

• t-test for differences in power:

Simplest Scenario

Fig. 2. Example lineup using density plots: one plot of data embedded
with nineteen plots of null data. Which plot is most different from the
others? (See the text for the answer.)

the benefit of lineups for plot design evaluation we have conducted
an experiment that also contains simulated data, where the data is con-
structed to match and expand on the features of interest in the data. For
example, in a simple situation, where the discovered feature of interest
is a difference between the centers of two distributions, simulated data
would be constructed roughly matching the distribution of the data that
varies the distance between centers, and also spread and sample size.
Lineups of these simulated data (embedded with simulated null data
plots) are generated and evaluated along with the lineups of data. The
simulation study provides a backdrop for the real data, which enables
the broad applicability to be studied and a gauge for the strength of the
pattern in the data.

Lineups provide a way to statistically quantify the significance of
the finding [12]: think of the lineup as a set of m plots, one of which is
the data (in Figure 2, m = 20). The probability that an observer picks
the data plot just by chance, i.e. when it is really *not* different from
the other null plots, is 1/m. If an observer is able to identify the data
plot from the lineup, we reject the null hypothesis. This sets our Type
I error rate, α , at a level of 1/m.

When there are multiple independent observers (n) we have more
freedom in setting the significance level: assume that x out of those
n observers picked the data plot. Let X be the corresponding random
variable, i.e. X = # times out of n independent repetitions that the data
plot is picked from the lineup. Under the null hypothesis, X has a
Binomial distribution: X ∼ Bn,1/m. We can then compute the p-value
of a lineup as the probability to have x or more observers picking the
data plot (under the assumption that the null hypothesis is true, i.e. the
plot is not different):

p-value = P(X ≥ x | H0) = 1−Bn,1/m(x−1).

When comparing different tests of the same quantity, we consider
that test better if it has greater power. The power of a test is the proba-
bility to reject the null hypothesis, irrespective of whether it is true or
false – in a lineup this is the probability that an observer identifies the
plot of the real data. Analytically, power is usually difficult to calcu-
late because it is requires specific use of an alternative hypothesis to
calculate the probability. Work in [22] addresses this to some extent

with measures on the quality of a lineup, how numerically different,
as best it can be calculated, the data plot is from the null plots.

In our situation, though, it is fairly straightforward to estimate the
power of a lineup:

Let n be the number of independent observers and xi the
number of observers who picked plot i, i ∈ {1, ...,m},
from the lineup. Then (x1,x2, ...,xm) follows a multino-
mial distribution Multπ1,π2,...,πm

(x1,x2, ...,xm) with ∑i πi =
1, where πi is the probability that plot i is picked by an
observer, which we can estimate as �πi = xi/n.

The power of a lineup can therefore be estimated as the ratio of correct
identifications x out of n viewings. (More details on these derivations
can be found in [13].)

The power of lineups is used in the work presented here to eval-
uate the effectiveness of different plot designs. This paper describes
two examples where we had real data analysis problems and decisions
to make in order to communicate the results. Section 2 explains the
process of comparing designs. Section 3 describes two data analysis
problems, the experiments conducted to evaluate the plot designs, and
presents findings. We conclude in Section 4 and give suggestions for
future use.

2 COMPARISON OF DESIGNS

We are going to make use of the signal strength gained from multiple
viewings of a lineup in order to evaluate competing designs as follows:

1. Create Lineup Data: assuming that at least two variables, X

and Y are involved in the design, we create data for a lineup of
size m by creating m− 1 permutations of Y or, in the case of a
simulation study, drawing m−1 samples of size n (the number of
rows in the data) from the null distribution. Add the original data
to the lineup data randomly between 1 and m. The R package
nullabor provides a framework for easy creation of lineup
data.

2. Create lineups from competing designs: using the same data,
render lineups of all competing designs.

3. Evaluate Lineups: by presenting the lineups to independent ob-
servers. Assess both signal strength and time needed by individ-
uals to come to a decision. Note that each observer should only
be exposed to each lineup data once.

4. Evaluate Competing Designs: differences in signal strength or
time to decision are due to differences in the design. In the case
that individuals were shown multiple lineups (as part of a bigger
study), it is possible to correct outcome measurements for an
individual’s visual ability.

Comparing power of competing designs therefore involves compar-
ing percentages of correct responses �π1 and �π2. An α·100% confi-
dence interval for this comparison is given as

�π1 − �π2 ± t1−α/2,n−1

�
�π1(1− �π1)/n1 + �π2(1− �π2)/n2, (1)

where n is the Welch-Satterthwaite [27] estimate of the degrees of free-
dom. Note that we use �πi = (xi + 1)/(ni + 1) and ni + 2 for a better
coverage of the confidence interval [1]. In the case of more than two
competing designs, we have to additionally adjust the confidence in-
tervals for multiple testing, e.g. using a Bonferroni adjustment which
uses an adjusted confidence level α̃ = α/k, where k are the number
of confidence intervals involved (single adjustment) or the number of
comparisons anticipated.

While this allows a direct comparison of the designs, we cannot
adjust for the individuals’ perceptual abilities. In the case that we
have multiple responses from each person (i.e. data is collected on
several different lineup tasks), we can estimate their perceptual ability
and correct power differences between competing designs accordingly,
e.g. by modeling power using a subject-specific random intercept in a
generalized linear model.

π1 = x1/n1 and π2 = x2/n2 ^ ^



More interesting: 
What affects Power?

• signal strength

• individuals’ visual abilities

• other problem specific properties

Add in covariates and assess power of

Statistical Method: 
logistic regression with random effect for individuals



Airport Efficiency and 
Wind Direction

• Data: Wheel-on and -off events for three years (FAA), 
combined with weather (wind condition) for each 
event (restricted to normal operating hours between 
6 am and 10 pm)

• results in approx. 500k events

• efficiency: 
time in mins
between
wheel events

SEA airport



Wind direction in SEA

Displaying wind-
efficiency relationship

• Wind direction is measured in angles (discrete, in 
10 degree intervals)



Wind direction in SEA
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Displaying wind-
efficiency relationship
• Orthogonal instead of polar layout:
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Experimental Setup
• design: polar versus orthogonal

          with and without grid lines

• sample size (in %): 2, 4, 6, 8, 10, 24

• shifts in direction (in o): 0, 90, 180, 270

• two replicates each

• results in 192 different plots, included in 
as many lineups
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Evaluation
•  958 evaluations by 100 participants

• use one of ten lineups as reference - if people don’t get a 
very easy one correct, we will exclude their data from the 
study



Evaluation
•  958 evaluations by 100 participants

• use one of ten lineups as reference - if people don’t get a 
very easy one correct, we will exclude their data from the 
study

Time taken (in seconds) for answer
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Fig. 8. Power results for four competing designs: polar versus cartesian,
each with and without a reference line; panels are facetted by sample
size (as percentage of original data). Dots show estimated power, sur-
rounded by intervals of standard errors. The letters at the front of each
panel allow comparisons across all designs [18]: all designs with dif-
ferent letters have significantly different power (at α = 0.05). This is
adjusted for all pairwise comparisons using a Benjamini-Hochberg ad-
justment [3, 9].

power of designs. To adjust for individuals’ ability, a random intercept

was included in the model.

Table 2. Output of a generalized linear mixed effects model for power
of lineups (i.e. probability of identifying the data plot) for comparing de-
signs. Included are two-way interactions with sample size and shifts in
wind direction (offset). Cartesian designs without a reference line at off-
set 0 are used as baseline. Results are based on 976 lineup evaluations
by 115 participants.

Estimate Error z-value p-value

design cartesian -0.08 0.39 -0.21 0.84

polar -1.98 0.32 -6.13 0.00 ***

main effects
reference line -0.14 0.26 -0.53 0.59

sample size 0.27 0.04 6.31 0.00 ***

offset: 90 degrees -0.43 0.37 -1.18 0.24

180 degrees -0.89 0.35 -2.51 0.01 **

270 degrees 0.21 0.38 0.55 0.58

interactions
polar:line 0.51 0.35 1.44 0.15

polar:sample size -0.23 0.05 -5.02 0.00 ***

polar:offset 90 0.64 0.49 1.30 0.20

polar:offset 180 0.91 0.47 1.92 0.05 .

polar:offset 270 -0.73 0.54 -1.35 0.18

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Overall, the results show huge differences in the power of designs

between polar charts and cartesian: cartesian designs are significantly

more powerful than polar charts, particularly so with small sample

sizes. The reference line has surprisingly little influence, but it helps

more for polar charts than for cartesian charts, An increase in sample

size has a positive impact on power. Polar charts need a much bigger

sample size to see an increase in power – only at about 24% of the

original data do we see about the same power as for cartesian charts of

a sample size of 2%. The changes in offset are significant – interest-

ingly, borderline behavior (90 and 270 degrees) does not show a differ-

ence between polar and cartesian charts, whereas an inversion of the

wave pattern (first up, then down), does show a difference. The power

of cartesian lineups suffers significantly from this inversion whereas

power of polar charts is unaffected. This is an unexpected finding, but

is consistent throughout different lineups in the data. Figure 9 summa-

rizes the results from the model: power predictions (y axis) are shown

by sample size (x axis). The thick lines show average power by design

for different shifts in wind direction. The thin lines represent power

for individuals. What can be seen is the different impact of the off-

set by design: while an offset of 270 degrees (the ‘mountain’ pattern)

has the highest power in cartesian charts, it comes out worst in polar

charts.
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Fig. 9. Predicted Power of designs. The thin lines and the points on
y axis show variability due to individuals’ abilities. The saturated lines
show average predicted power for each of the designs.

Time taken to answer was log transformed before the modeling pro-

cess to de-emphasize the impact of very large values (up to 500 sec-

onds). The findings are consistent with correctness - time taken shows

big differences between polar and cartesian charts. The reference lines

seem to increase the evaluation time, but not significantly. An increase

in sample size decreases evaluation time, The inversion of the wave

pattern at 180 degrees leads to a significant increase in time for carte-

sian charts, but not for polar charts (at least not significantly). Table 3

shows an overview of the model parameters and estimates.

Table 3. Model output for linear mixed effects model of (log) time taken,
barchart design is baseline.

Estimate Error t-value approx p-value

design intercept 3.58 0.09 41.34 0.00 ***

polar 0.22 0.10 2.17 0.03 *

covariates
reference line 0.08 0.06 1.50 0.13

sample size -0.03 0.00 -8.73 0.00 ***

offset: 90 -0.06 0.08 -0.72 0.47

180 0.16 0.08 2.07 0.04 *

270 -0.04 0.07 -0.54 0.59

interactions
polar:line -0.03 0.08 -0.40 0.69

polar:sample size 0.03 0.01 6.25 0.00 ***

polar:offset 90 0.14 0.11 1.23 0.22

polar:offset 180 -0.17 0.11 -1.55 0.12

polar:offset 270 0.17 0.11 1.50 0.13

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Confidence levels are measured on a five point scale — they are sub-

jective assessments by the participant ‘how certain are you’. We model

confidence using the same model structure as before, i.e. using sample

size and offset as covariates and including up to two-way interactions,

While there is a difference between the designs - participants reported

higher confidence in dealing with the cartesian lineups – this is only

a trend (i.e. not significant at 5% but below 10%). The only signifi-

cant effect on reported confidence level is the use of reference lines in

polar coordinates: participants report an increase in confidence (0.31

± 0.13, p value = 0.01) when using the reference line. This, however,

does not translate to a significant increase in accuracy of results, as we

have seen before.

Cartesian coordinates resulted in a significantly more accurate iden-

tification of the real data set in significantly shorter time.

3.3 Study II: Comparing Distribution Centers
3.3.1 Study Setup
In a second experiment, we conducted a simulation study to investi-

gate the power of four competing designs, as shown in Figure 11, in

assessing a mean shift between distributions.
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Fig. 8. Power results for four competing designs: polar versus cartesian,
each with and without a reference line; panels are facetted by sample
size (as percentage of original data). Dots show estimated power, sur-
rounded by intervals of standard errors. The letters at the front of each
panel allow comparisons across all designs [18]: all designs with dif-
ferent letters have significantly different power (at α = 0.05). This is
adjusted for all pairwise comparisons using a Benjamini-Hochberg ad-
justment [3, 9].

power of designs. To adjust for individuals’ ability, a random intercept

was included in the model.

Table 2. Output of a generalized linear mixed effects model for power
of lineups (i.e. probability of identifying the data plot) for comparing de-
signs. Included are two-way interactions with sample size and shifts in
wind direction (offset). Cartesian designs without a reference line at off-
set 0 are used as baseline. Results are based on 976 lineup evaluations
by 115 participants.

Estimate Error z-value p-value

design cartesian -0.08 0.39 -0.21 0.84

polar -1.98 0.32 -6.13 0.00 ***

main effects
reference line -0.14 0.26 -0.53 0.59

sample size 0.27 0.04 6.31 0.00 ***

offset: 90 degrees -0.43 0.37 -1.18 0.24

180 degrees -0.89 0.35 -2.51 0.01 **

270 degrees 0.21 0.38 0.55 0.58

interactions
polar:line 0.51 0.35 1.44 0.15

polar:sample size -0.23 0.05 -5.02 0.00 ***

polar:offset 90 0.64 0.49 1.30 0.20

polar:offset 180 0.91 0.47 1.92 0.05 .

polar:offset 270 -0.73 0.54 -1.35 0.18

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Overall, the results show huge differences in the power of designs

between polar charts and cartesian: cartesian designs are significantly

more powerful than polar charts, particularly so with small sample

sizes. The reference line has surprisingly little influence, but it helps

more for polar charts than for cartesian charts, An increase in sample

size has a positive impact on power. Polar charts need a much bigger

sample size to see an increase in power – only at about 24% of the

original data do we see about the same power as for cartesian charts of

a sample size of 2%. The changes in offset are significant – interest-

ingly, borderline behavior (90 and 270 degrees) does not show a differ-

ence between polar and cartesian charts, whereas an inversion of the

wave pattern (first up, then down), does show a difference. The power

of cartesian lineups suffers significantly from this inversion whereas

power of polar charts is unaffected. This is an unexpected finding, but

is consistent throughout different lineups in the data. Figure 9 summa-

rizes the results from the model: power predictions (y axis) are shown

by sample size (x axis). The thick lines show average power by design

for different shifts in wind direction. The thin lines represent power

for individuals. What can be seen is the different impact of the off-

set by design: while an offset of 270 degrees (the ‘mountain’ pattern)

has the highest power in cartesian charts, it comes out worst in polar

charts.
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Fig. 9. Predicted Power of designs. The thin lines and the points on
y axis show variability due to individuals’ abilities. The saturated lines
show average predicted power for each of the designs.

Time taken to answer was log transformed before the modeling pro-

cess to de-emphasize the impact of very large values (up to 500 sec-

onds). The findings are consistent with correctness - time taken shows

big differences between polar and cartesian charts. The reference lines

seem to increase the evaluation time, but not significantly. An increase

in sample size decreases evaluation time, The inversion of the wave

pattern at 180 degrees leads to a significant increase in time for carte-

sian charts, but not for polar charts (at least not significantly). Table 3

shows an overview of the model parameters and estimates.

Table 3. Model output for linear mixed effects model of (log) time taken,
barchart design is baseline.

Estimate Error t-value approx p-value

design intercept 3.58 0.09 41.34 0.00 ***

polar 0.22 0.10 2.17 0.03 *

covariates
reference line 0.08 0.06 1.50 0.13

sample size -0.03 0.00 -8.73 0.00 ***

offset: 90 -0.06 0.08 -0.72 0.47

180 0.16 0.08 2.07 0.04 *

270 -0.04 0.07 -0.54 0.59

interactions
polar:line -0.03 0.08 -0.40 0.69

polar:sample size 0.03 0.01 6.25 0.00 ***

polar:offset 90 0.14 0.11 1.23 0.22

polar:offset 180 -0.17 0.11 -1.55 0.12

polar:offset 270 0.17 0.11 1.50 0.13

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Confidence levels are measured on a five point scale — they are sub-

jective assessments by the participant ‘how certain are you’. We model

confidence using the same model structure as before, i.e. using sample

size and offset as covariates and including up to two-way interactions,

While there is a difference between the designs - participants reported

higher confidence in dealing with the cartesian lineups – this is only

a trend (i.e. not significant at 5% but below 10%). The only signifi-

cant effect on reported confidence level is the use of reference lines in

polar coordinates: participants report an increase in confidence (0.31

± 0.13, p value = 0.01) when using the reference line. This, however,

does not translate to a significant increase in accuracy of results, as we

have seen before.

Cartesian coordinates resulted in a significantly more accurate iden-

tification of the real data set in significantly shorter time.

3.3 Study II: Comparing Distribution Centers
3.3.1 Study Setup
In a second experiment, we conducted a simulation study to investi-

gate the power of four competing designs, as shown in Figure 11, in

assessing a mean shift between distributions.
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Fig. 8. Power results for four competing designs: polar versus cartesian,
each with and without a reference line; panels are facetted by sample
size (as percentage of original data). Dots show estimated power, sur-
rounded by intervals of standard errors. The letters at the front of each
panel allow comparisons across all designs [18]: all designs with dif-
ferent letters have significantly different power (at α = 0.05). This is
adjusted for all pairwise comparisons using a Benjamini-Hochberg ad-
justment [3, 9].

power of designs. To adjust for individuals’ ability, a random intercept

was included in the model.

Table 2. Output of a generalized linear mixed effects model for power
of lineups (i.e. probability of identifying the data plot) for comparing de-
signs. Included are two-way interactions with sample size and shifts in
wind direction (offset). Cartesian designs without a reference line at off-
set 0 are used as baseline. Results are based on 976 lineup evaluations
by 115 participants.

Estimate Error z-value p-value

design cartesian -0.08 0.39 -0.21 0.84

polar -1.98 0.32 -6.13 0.00 ***

main effects
reference line -0.14 0.26 -0.53 0.59

sample size 0.27 0.04 6.31 0.00 ***

offset: 90 degrees -0.43 0.37 -1.18 0.24

180 degrees -0.89 0.35 -2.51 0.01 **

270 degrees 0.21 0.38 0.55 0.58

interactions
polar:line 0.51 0.35 1.44 0.15

polar:sample size -0.23 0.05 -5.02 0.00 ***

polar:offset 90 0.64 0.49 1.30 0.20

polar:offset 180 0.91 0.47 1.92 0.05 .

polar:offset 270 -0.73 0.54 -1.35 0.18

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Overall, the results show huge differences in the power of designs

between polar charts and cartesian: cartesian designs are significantly

more powerful than polar charts, particularly so with small sample

sizes. The reference line has surprisingly little influence, but it helps

more for polar charts than for cartesian charts, An increase in sample

size has a positive impact on power. Polar charts need a much bigger

sample size to see an increase in power – only at about 24% of the

original data do we see about the same power as for cartesian charts of

a sample size of 2%. The changes in offset are significant – interest-

ingly, borderline behavior (90 and 270 degrees) does not show a differ-

ence between polar and cartesian charts, whereas an inversion of the

wave pattern (first up, then down), does show a difference. The power

of cartesian lineups suffers significantly from this inversion whereas

power of polar charts is unaffected. This is an unexpected finding, but

is consistent throughout different lineups in the data. Figure 9 summa-

rizes the results from the model: power predictions (y axis) are shown

by sample size (x axis). The thick lines show average power by design

for different shifts in wind direction. The thin lines represent power

for individuals. What can be seen is the different impact of the off-

set by design: while an offset of 270 degrees (the ‘mountain’ pattern)

has the highest power in cartesian charts, it comes out worst in polar

charts.
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Fig. 9. Predicted Power of designs. The thin lines and the points on
y axis show variability due to individuals’ abilities. The saturated lines
show average predicted power for each of the designs.

Time taken to answer was log transformed before the modeling pro-

cess to de-emphasize the impact of very large values (up to 500 sec-

onds). The findings are consistent with correctness - time taken shows

big differences between polar and cartesian charts. The reference lines

seem to increase the evaluation time, but not significantly. An increase

in sample size decreases evaluation time, The inversion of the wave

pattern at 180 degrees leads to a significant increase in time for carte-

sian charts, but not for polar charts (at least not significantly). Table 3

shows an overview of the model parameters and estimates.

Table 3. Model output for linear mixed effects model of (log) time taken,
barchart design is baseline.

Estimate Error t-value approx p-value

design intercept 3.58 0.09 41.34 0.00 ***

polar 0.22 0.10 2.17 0.03 *

covariates
reference line 0.08 0.06 1.50 0.13

sample size -0.03 0.00 -8.73 0.00 ***

offset: 90 -0.06 0.08 -0.72 0.47

180 0.16 0.08 2.07 0.04 *

270 -0.04 0.07 -0.54 0.59

interactions
polar:line -0.03 0.08 -0.40 0.69

polar:sample size 0.03 0.01 6.25 0.00 ***

polar:offset 90 0.14 0.11 1.23 0.22

polar:offset 180 -0.17 0.11 -1.55 0.12

polar:offset 270 0.17 0.11 1.50 0.13

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Confidence levels are measured on a five point scale — they are sub-

jective assessments by the participant ‘how certain are you’. We model

confidence using the same model structure as before, i.e. using sample

size and offset as covariates and including up to two-way interactions,

While there is a difference between the designs - participants reported

higher confidence in dealing with the cartesian lineups – this is only

a trend (i.e. not significant at 5% but below 10%). The only signifi-

cant effect on reported confidence level is the use of reference lines in

polar coordinates: participants report an increase in confidence (0.31

± 0.13, p value = 0.01) when using the reference line. This, however,

does not translate to a significant increase in accuracy of results, as we

have seen before.

Cartesian coordinates resulted in a significantly more accurate iden-

tification of the real data set in significantly shorter time.

3.3 Study II: Comparing Distribution Centers
3.3.1 Study Setup
In a second experiment, we conducted a simulation study to investi-

gate the power of four competing designs, as shown in Figure 11, in

assessing a mean shift between distributions.

No significant benefit from helper lines (except in people’s 
confidence)

+

+

+

+

Proportion correctPolar charts perform significantly worse
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Fig. 8. Power results for four competing designs: polar versus cartesian,
each with and without a reference line; panels are facetted by sample
size (as percentage of original data). Dots show estimated power, sur-
rounded by intervals of standard errors. The letters at the front of each
panel allow comparisons across all designs [18]: all designs with dif-
ferent letters have significantly different power (at α = 0.05). This is
adjusted for all pairwise comparisons using a Benjamini-Hochberg ad-
justment [3, 9].

power of designs. To adjust for individuals’ ability, a random intercept

was included in the model.

Table 2. Output of a generalized linear mixed effects model for power
of lineups (i.e. probability of identifying the data plot) for comparing de-
signs. Included are two-way interactions with sample size and shifts in
wind direction (offset). Cartesian designs without a reference line at off-
set 0 are used as baseline. Results are based on 976 lineup evaluations
by 115 participants.

Estimate Error z-value p-value

design cartesian -0.08 0.39 -0.21 0.84

polar -1.98 0.32 -6.13 0.00 ***

main effects
reference line -0.14 0.26 -0.53 0.59

sample size 0.27 0.04 6.31 0.00 ***

offset: 90 degrees -0.43 0.37 -1.18 0.24

180 degrees -0.89 0.35 -2.51 0.01 **

270 degrees 0.21 0.38 0.55 0.58

interactions
polar:line 0.51 0.35 1.44 0.15

polar:sample size -0.23 0.05 -5.02 0.00 ***

polar:offset 90 0.64 0.49 1.30 0.20

polar:offset 180 0.91 0.47 1.92 0.05 .

polar:offset 270 -0.73 0.54 -1.35 0.18

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Overall, the results show huge differences in the power of designs

between polar charts and cartesian: cartesian designs are significantly

more powerful than polar charts, particularly so with small sample

sizes. The reference line has surprisingly little influence, but it helps

more for polar charts than for cartesian charts, An increase in sample

size has a positive impact on power. Polar charts need a much bigger

sample size to see an increase in power – only at about 24% of the

original data do we see about the same power as for cartesian charts of

a sample size of 2%. The changes in offset are significant – interest-

ingly, borderline behavior (90 and 270 degrees) does not show a differ-

ence between polar and cartesian charts, whereas an inversion of the

wave pattern (first up, then down), does show a difference. The power

of cartesian lineups suffers significantly from this inversion whereas

power of polar charts is unaffected. This is an unexpected finding, but

is consistent throughout different lineups in the data. Figure 9 summa-

rizes the results from the model: power predictions (y axis) are shown

by sample size (x axis). The thick lines show average power by design

for different shifts in wind direction. The thin lines represent power

for individuals. What can be seen is the different impact of the off-

set by design: while an offset of 270 degrees (the ‘mountain’ pattern)

has the highest power in cartesian charts, it comes out worst in polar

charts.
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Fig. 9. Predicted Power of designs. The thin lines and the points on
y axis show variability due to individuals’ abilities. The saturated lines
show average predicted power for each of the designs.

Time taken to answer was log transformed before the modeling pro-

cess to de-emphasize the impact of very large values (up to 500 sec-

onds). The findings are consistent with correctness - time taken shows

big differences between polar and cartesian charts. The reference lines

seem to increase the evaluation time, but not significantly. An increase

in sample size decreases evaluation time, The inversion of the wave

pattern at 180 degrees leads to a significant increase in time for carte-

sian charts, but not for polar charts (at least not significantly). Table 3

shows an overview of the model parameters and estimates.

Table 3. Model output for linear mixed effects model of (log) time taken,
barchart design is baseline.

Estimate Error t-value approx p-value

design intercept 3.58 0.09 41.34 0.00 ***

polar 0.22 0.10 2.17 0.03 *

covariates
reference line 0.08 0.06 1.50 0.13

sample size -0.03 0.00 -8.73 0.00 ***

offset: 90 -0.06 0.08 -0.72 0.47

180 0.16 0.08 2.07 0.04 *

270 -0.04 0.07 -0.54 0.59

interactions
polar:line -0.03 0.08 -0.40 0.69

polar:sample size 0.03 0.01 6.25 0.00 ***

polar:offset 90 0.14 0.11 1.23 0.22

polar:offset 180 -0.17 0.11 -1.55 0.12

polar:offset 270 0.17 0.11 1.50 0.13

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Confidence levels are measured on a five point scale — they are sub-

jective assessments by the participant ‘how certain are you’. We model

confidence using the same model structure as before, i.e. using sample

size and offset as covariates and including up to two-way interactions,

While there is a difference between the designs - participants reported

higher confidence in dealing with the cartesian lineups – this is only

a trend (i.e. not significant at 5% but below 10%). The only signifi-

cant effect on reported confidence level is the use of reference lines in

polar coordinates: participants report an increase in confidence (0.31

± 0.13, p value = 0.01) when using the reference line. This, however,

does not translate to a significant increase in accuracy of results, as we

have seen before.

Cartesian coordinates resulted in a significantly more accurate iden-

tification of the real data set in significantly shorter time.

3.3 Study II: Comparing Distribution Centers
3.3.1 Study Setup
In a second experiment, we conducted a simulation study to investi-

gate the power of four competing designs, as shown in Figure 11, in

assessing a mean shift between distributions.

No significant benefit from helper lines (except in people’s 
confidence)

Shift in wind direction does not have an impact on performance ...

+

+

+

+

Proportion correctPolar charts perform significantly worse



Effect of shifts

• average power drawn by thick solid lines

• subject-specific power shown with thin lines

• subject specific effects quite large - how do we get power 
observers?
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Effect of shifts

• average power drawn by thick solid lines

• subject-specific power shown with thin lines

• subject specific effects quite large - how do we get power 
observers?
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Figure 4: Histograms of random effects. Subject-specific effects u (left) and data-specific

effects � (right).

## Error: object type not found

Figure 5: Effects plot of model (1). Scenarios are shown in different colours, labelling is

used to show significant differences between effects.

πijk is the ability of individual i to pick out the data plot from parameter setting

j and design k under scenario �.
δk� is the treatment-specific effect, i.e. the effect that design k has under scenario

� on picking out the data plot.

ui is a subject-specific random effect with u ∼ MV N(0,σ2
u · I). ui reflects

individual i’s ability to pick out visual signals from a graphical display.

�i is a data-specific random effect with � ∼ MV N(0,σ2
� · I). �i is the difficulty

level for a specific parameter setting; �, u are independent.

For the 455 participants in the study, the subject specific random effects ui ∈ (-0.98, 0.99),

with �σu =0.36. Data specific-effects �i ∈ (-1.67, 1.07), with �σ� =0.79. While subject-

specific effects appear to be symmetric and close to normal, the data-specific effects are

more skewed with a hint of a structural shift towards larger effect sizes for scenario (iii).

We are only going to make use of the subject-specific random effects, whereas we are using

the data-specific effects for mere correction purposes.

Figure 5 shows an effects plot corresponding to the model specified in equation (1) for δk�.

The different scenarios are coloured. Within scenarios, usually only the top and the bottom

design are significantly different at a 5% level, but the order gives us already some insights:

regular boxplots exhibit the most trouble in secnario (iii) - all other plots show better

performance, only jittered dotplots perform significantly better than boxplots, though.

Violin plots with the highest kernel bandwidth perform significantly worse in scenario (i)

than any of the vase plots and the boxplot. Jittered dotplots, again, perform the best
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Conclusions 

• overwhelming evidence that winds from SE lead to 
least efficient traffic flow

• BUT: winds from NW lead to most efficient traffic 
flow

• naive conclusion: use runways in other direction 
for days with SE winds?

for Seattle 



Conclusions

• Use lineup scenario to get valid p-values for visual findings 

• useful in situations where conventional methods break 
down (large or non-traditional data)

• define power (function) for lineups to evaluate
- competing designs
- measure impact of other co-variates on display

• Airport study: euclidean charts better at detecting 
patterns than polar charts

funded by  



Headsets for monitoring 
data

• http://www.newswise.com/articles/anesthesiologists-test-headsets-for-
monitoring-data-during-surgery

• Anesthesia & Analgesia (Apr-2010)

graphs need to be highly efficient and preferably small


