Concepts of Visual Inference

Heike Hofmann
Statistics at lowa State University

Outline

- Barcharts and Pies
- Visual Inference
- Framework for Comparing Designs

Other sources of data and charts

- Anesthesia Quality Institute:Anesthesia in the United States, 2009

Excel graphics

- National Resident Matching Program, Data and Report 2009

Graphics are not in Excel

National Resident Matching Program

Figure 7 Percent of Matches by Choice and Type of Applicant, 2009

National Resident Matching Program

U.S. Seniors

Independent Applicants

Edward Tufte, The Visual Display of

 Quantitative Information:the only worse design than a pie chart is several of them

Independent Applicants

National Resident
Matching Program
-redone-

Independent Applicants

Evaluating Competing Designs

Evaluate perceptual strengths and weaknesses

- usually we are not interested in exact quantities
- ... But ... use accuracy as measure

Cleveland \& McGill (Science, I985):
A graphical form that involves elementary perceptual tasks that lead to more accurate judgments than another graphical form (with the same quantitative information) will result in a better organization and increase the chances of correct perception of patterns and behavior.

Example: Bar vs Pie

What tasks are involved in comparisons?

Area is proportional to value

comparison of angles, curve length

comparison of widths, positions along a common scale

Example: Bar vs Pie

What tasks are involved in comparisons?

Area is proportional to value

comparison of angles, curve length

comparison of widths, positions along a common scale

Pies or Bars?

small

user studies

Positions along a common scale

Positions along a common scale

Determine the width for bins A to F as accurately as possible

Positions along a common scale

Positions along a common scale

Determine the width for bins A to F as accurately as possible

Bin	Value
A	12
B	23
C	14
D	24
E	20
F	7

Positions along a common scale

Determine the width for bins A to F as accurately as possible

Bin	Value
A	12
B	23
C	14
D	24
E	20
F	7

write down (absolute) differences between true values and your estimates

Show of hands: Sum of Errors

- 5 or less?
- 3 or less?
- Accurate?

Angle comparisons

Determine the percentage for slices A to F as accurately as possible

Angle comparisons

Determine the percentage for slices A to F as accurately as possible

Angle comparisons

Determine the percentage for slices A to F as accurately as possible

Angle comparisons

Determine the percentage for slices A to F as accurately as possible

Slice	Value
A	29
B	13
C	7
D	18
E	10
F	24

Angle comparisons

Determine the percentage for slices A to F as accurately as possible

Slice	Value
A	29
B	13
C	7
D	18
E	10
F	24

write down differences between true values and your estimates

Show of hands: Sum of Errors

- Ran out of time?
- 5 or less?
- 3 or less?
- Accurate?

Show of hands: Sum of Errors

- Ran out of time?
- 5 or less?
- 3 or less?
- Accurate?

Barcharts give us more accurate results, faster ...

Fact or Artifact?

- Is what we see actually there? (or is it just random fluctuation in the data)
- Lineup protocol allows us to quantify significance of visual findings

Lineup Example

Which plot is the most different?

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineup Example

Lineups

- data plot is placed randomly among decoys; "police lineup"
- are we able to still identify the data?
... yes? - that's evidence that the data is different from the decoy plots
- Probability to identify data 'accidentally': I in m
- quantify difference as visual p-value:
$\operatorname{Pr}($ at least x out of n observers identified the data)

$$
P(X \geq k)=\sum_{i=k}^{N}\binom{N}{i}\left(\frac{1}{m}\right)^{i}\left(1-\frac{1}{m}\right)^{N-i}
$$

Lineups

- data plot is placed randomly among decoys; "police lineup"
- are we able to still identify the data?
... yes? - that's evidence that the data is different from the decoy plots
- Probability to identify data 'accidentally': I in m
- quantify difference as visual p-value:
$\operatorname{Pr}($ at least x out of n observers identified the data)
Ist example: 5 out of 9 responses picked data

$$
P(X \geq k)=\sum_{i=k}^{N}\binom{N}{i}\left(\frac{1}{m}\right)^{i}\left(1-\frac{1}{m}\right)^{N-i}
$$

Lineups

- data plot is placed randomly among decoys; "police lineup"
- are we able to still identify the data?
... yes? - that's evidence that the data is different from the decoy plots
- Probability to identify data 'accidentally': I in m
- quantify difference as visual p-value:
$\operatorname{Pr}($ at least x out of n observers identified the data)

$$
P(X \geq 5) \leq 10^{-4}
$$

$$
P(X \geq k)=\sum_{i=k}^{N}\binom{N}{i}\left(\frac{1}{m}\right)^{i}\left(1-\frac{1}{m}\right)^{N-i}
$$

Power of a design

- Premise: given a choice of plot designs, that design is better that makes it the easiest for an observer to identify the signal
- Power: $\operatorname{Pr}($ pick data plot from lineup)

Power of a design

- Premise: given a choice of plot designs, that design is better that makes it the easiest for an observer to identify the signal
- Power: $\operatorname{Pr}($ pick data plot from lineup)

5 out of 9 people picked first example: Power is 5/9

Compare Designs

Simplest Scenario

- One data set, two designs: n_{1} observers evaluate design I, x_{1} identify data n_{2} observers evaluate design $2, \mathrm{x}_{2}$ identify data
- power $\hat{\Pi}_{1}=x_{1} / n_{1}$ and $\hat{\Pi}_{2}=x_{2} / n_{2}$
- t-test for differences in power:

$$
\widehat{\pi}_{1}-\widehat{\pi}_{2} \pm t_{1-\alpha / 2, n-1} \sqrt{\hat{\pi}_{1}\left(1-\widehat{\pi}_{1}\right) / n_{1}+\widehat{\pi}_{2}\left(1-\widehat{\pi}_{2}\right) / n_{2}},
$$

More interesting: What affects Power?

Add in covariates and assess power of

- signal strength
- individuals' visual abilities
- other problem specific properties

Statistical Method:
logistic regression with random effect for individuals

Airport Efficiency and Wind Direction

- Data:Wheel-on and -off events for three years (FAA), combined with weather (wind condition) for each event (restricted to normal operating hours between 6 am and 10 pm)
- results in approx. 500k events
- efficiency: time in mins between wheel events

Displaying windefficiency relationship

- Wind direction is measured in angles (discrete, in 10 degree intervals)

Wind direction in SEA

Displaying windefficiency relationship

- Wind direction is measured in angles (discrete, in 10 degree intervals)
- Fill color indicates time between wheel events

Minutes between Wheel Events

Displaying windefficiency relationship

- Wind direction is measured in angles (discrete, in 10 degree intervals)
- Fill color indicates time between wheel events
- Additional white helper line

Minutes between Wheel Events

Displaying windefficiency relationship

- Wind direction is measured in angles (discrete, in 10 degree intervals)
- Fill color indicates time between wheel events
- Additional white helper line

Minutes between Wheel Events

Displaying windefficiency relationship

- Wind direction is measured in angles (discrete, in 10 degree intervals)
- Fill color indicates time between wheel events
- Additional white helper line

Displaying windefficiency relationship

- Orthogonal instead of polar layout:

Designs \& Experimental Setup

- design: polar versus orthogonal with and without grid lines
- sample size (in \%): 2, 4, 6, 8, 10,24
- shifts in direction (in ${ }^{\circ}$): 0, 90, I80, 270
- two replicates each
- results in 192 different plots, included in as many lineups

4	\checkmark	+	\|SU h	p://		blic	ta	(b/fe		k4/	edba	k.php		C	Q- G				
$\Leftrightarrow 0$	[1]	\#\#	stat	AC	GC	557	579	A+	Bb	IVwMV	GER	CS10	SA	LAS-Adv	ISU	HH	qt-git	hgit	KF	DE13	>
A Survey on Graphical Inference																					+

A Survey On Graphical Inference

Amazon MTurk

Home

You have 252 submissions in our record so far.

1. Your Choice select :
2. Reasoning

Strong wave pattern
Colored bands off grid Dark band thick/thin Other
3. How certain are you? (1= most, 5= least) $\bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5$
4. Your Turk ID hh

submit

show ten lineups to each participant in user study

Which plot is different?

Evaluation

- 958 evaluations by 100 participants
- use one of ten lineups as reference - if people don't get a very easy one correct, we will exclude their data from the study

Evaluation

- 958 evaluations by 100 participants
- use one of ten lineups as reference - if people don't get a very easy one correct, we will exclude their data from the study

Comparison of Designs

Comparison of Designs

Polar charts perform significantly worse

Comparison of Designs

Polar charts perform significantly worse
No significant benefit from helper lines (except in people's confidence)

Comparison of Designs

Polar charts perform significantly worse
No significant benefit from helper lines (except in people's confidence)
Shift in wind direction does not have an impact on performance ...

Effect of shifts

- average power drawn by thick solid lines
- subject-specific power shown with thin lines
- subject specific effects quite large - how do we get power observers?

Effect of shifts

- average power drawn by thick solid lines
- subject-specific power shown with thin lines
- subject specific effects quite large - how do we get power observers?

Conclusions

for Seattle

- overwhelming evidence that winds from SE lead to least efficient traffic flow
- BUT: winds from NW lead to most efficient traffic flow
- naive conclusion: use runways in other direction for days with SE winds?

Conclusions

- Use lineup scenario to get valid p-values for visual findings
- useful in situations where conventional methods break down (large or non-traditional data)
- define power (function) for lineups to evaluate
- competing designs
- measure impact of other co-variates on display
- Airport study: euclidean charts better at detecting patterns than polar charts

Headsets for monitoring data

- http://www.newswise.com/articles/anesthesiologists-test-headsets-for-monitoring-data-during-surgery
- Anesthesia \& Analgesia (Apr-20I0)
graphs need to be highly efficient and preferably small

