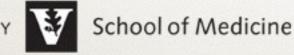
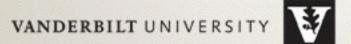
Smart Trash - RFID as Recycling Green Technology

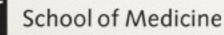

January 18, 2014 Brian Rothman, MD Vanderbilt University School of Medicine

No Disclosures


Learning Objectives

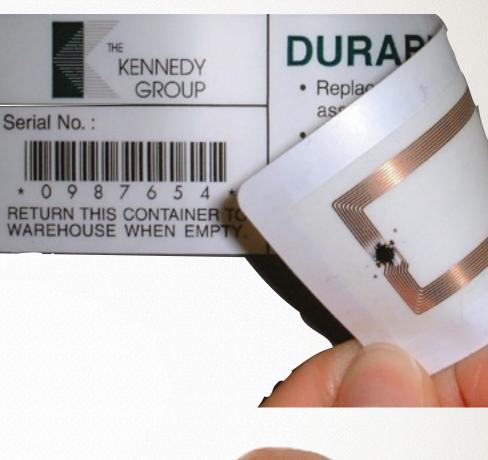
- Describe the makeup and basic functionality of RFID
- Evaluate the environmental impact of RFID on the environment and on waste streams
- Analyze potential benefits to RFID in healthcare waste disposal

<u>Radio Frequency</u> <u>Identification</u> (RFID)



Early Evolution

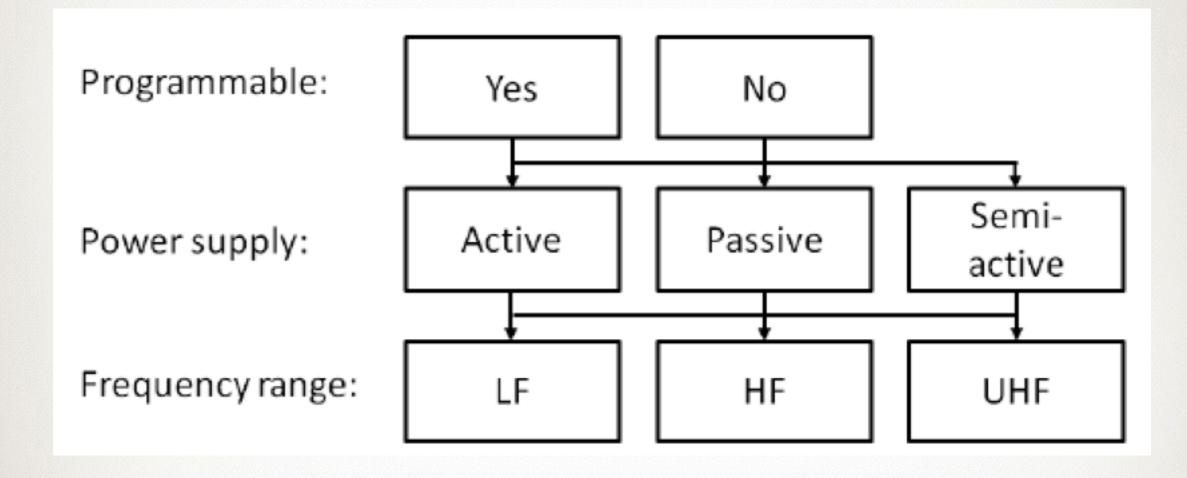
- WWII friendly aircraft ID
- 1973 first patent
- 1990s commercialization
 - Toll payments
 - Large item tracking


Transition - 1999 - MIT's Auto-ID Center

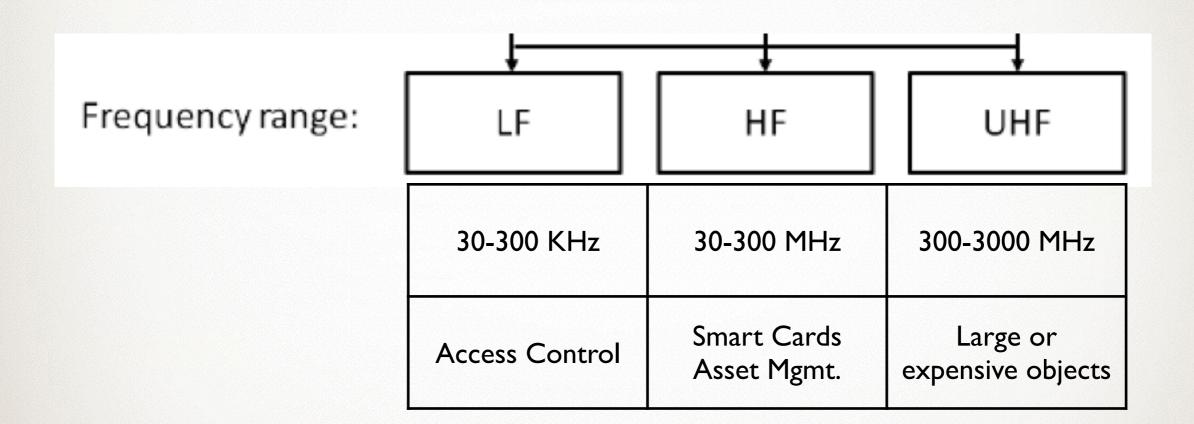
http://www.rfidjournal.com/articles/view?1338/2

Components

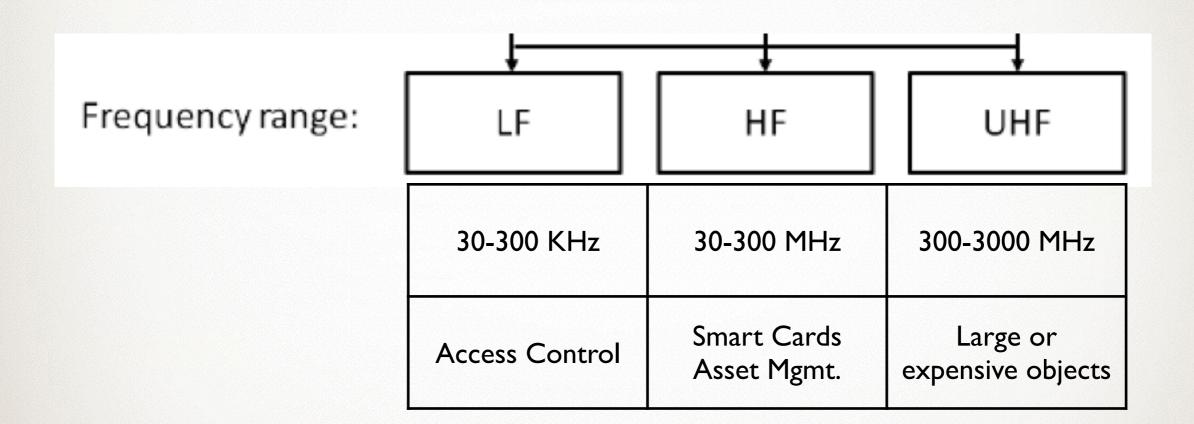
- Tag
 - On object
 - Computer chip
 - Antenna
- System
 - Reader (transceiver)
 - Middleware
 - Software application

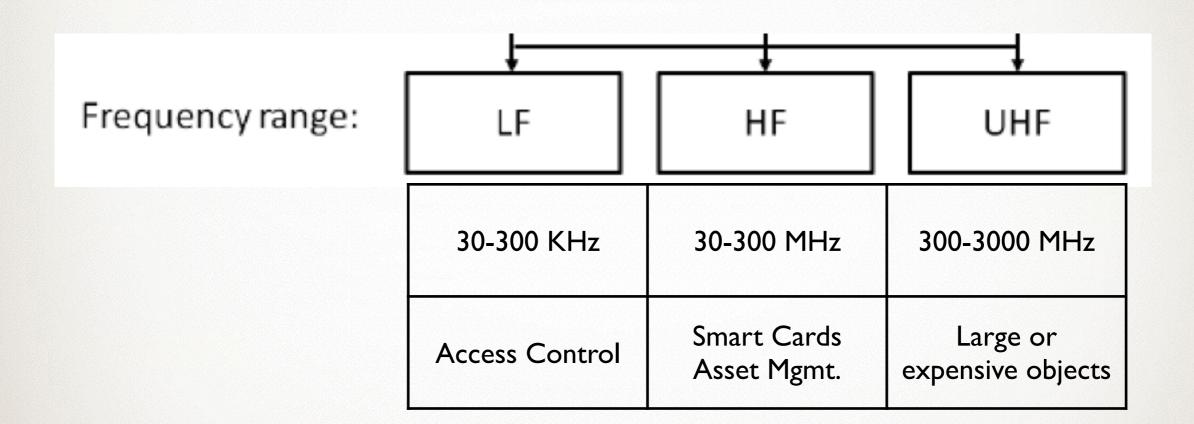


Interaction


- Reader sends radio signals
- Activates the tag
- Reads tag data
- Writes data on tag (sometimes)

Auto-ID Technology


	BarCodes	RFID
Line-of-sight	Required	None
Distance	Short	Longer
Cost	Cheap	More Costly
Data	Very little	Much, much, more

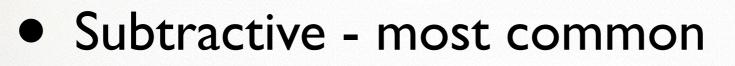


Power Supply Determines Tag Type

- Passive powered by reader
- Semi-active battery assisted but no active transmitter
- Active have power source (greater range, greater expense)

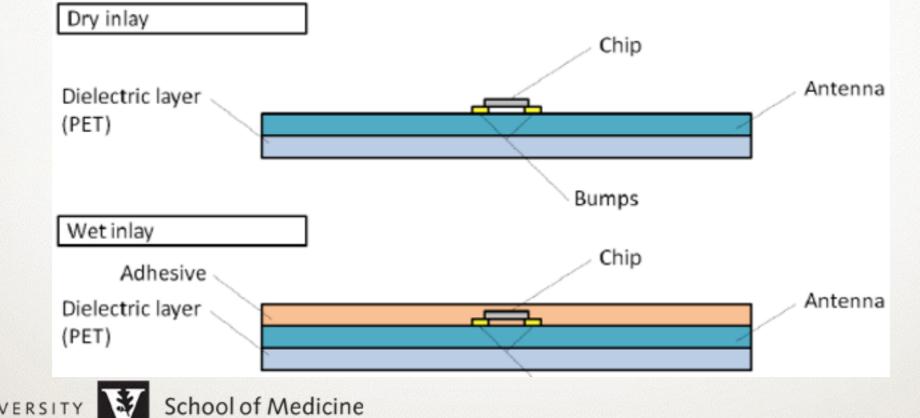
Comparison

Tag type	Passive	Active
Lifespan	Long (simple, light, small, envir. tol.)	Shorter (complex, limited by batt life)
Distance	Short	Longer
Cost	Cheap	More Costly
Data	Limited	Much, much, more
Application	Many uses, smaller items	RTLS, Sensors, large items

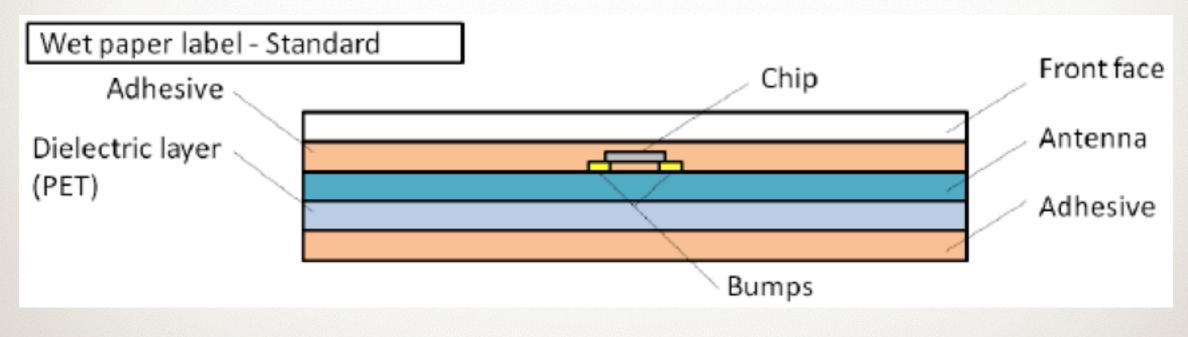

Content and Assembly

RFID Manufacturing

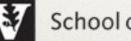
- Integrated circuit (wafer) chips
- Antenna
- Inlay
- Label conversion including object


Antenna Manufacturing

- Copper or Al-clad laminate etching
- Al foil Stamping
- Additive
 - Electroplating metals
 - Printing conductive inks

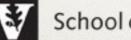

Inlay

- Inlay created by chip and antenna bonding
 - Dry no adhesive
 - Wet adhesive makes inlay "stickable"



Label

- Label wet paper label
 - One or more layers -
 - Front face paper
 - Backing adhesive


Material con	nposition of RFID	labels		
Label dimensions	mm ²	4171	2219	894
Breakdown of component	Material	Mass [mg]		
Face material	pp	189,3	100,7	40,6
	Paper	375,1	199,6	80,4
Adhesive	Acrylate	84,4	44,9	18,1
IC	Silicon	0,1	0,1	0,1
IC bumps	Gold	0,01	0,01	0,01
ACP (Anisotropic Conductive Paste)	Epoxy-based material	0,2	0,2	0,2
ACP metal	Nickel	0,01	0,01	0,01
Adhesive	Polyurethane	28,5	15,2	6,1
Antenna	Copper	267,4	142,3	57,3
	Aluminium	38,6	20,5	8,3
(printed)	Silver	28,0	14,9	6,0
(printed)	Bonding agent	11,8	6,3	2,5
Substrate	PET	290,7	154,7	62,3
Adhesive	Acrylate	112,9	60,1	24,2
Total with copper antenna	without face	784,2	417,5	168,3
Total with aluminium antenna	without face	555,4	295,7	119,3
Total with printed silver antenna	material	556,7	296,4	119,5

Material con	mposition of RFID	labels		
Label dimensions	mm ²	4171	2219	894
Breakdown of component	Material	M	ass [mg]	
Face material	PP	189,3	100,7	40,6
	Paper	375,1	199,6	80,4
Adhesive	Acrylate	84,4	44,9	18,1
IC	Silicon	0,1	0,1	0,1
IC bumps	Gold	0,01	0,01	0,01
ACP	Epoxy-based			
(Anisotropic Conductive Paste)	material	0,2	0,2	0,2
ACP metal	Nickel	0,01	0,01	0,01
Adhesive	Polyurethane	28,5	15,2	6,1
Antenna	Copper	267,4	142,3	57,3
	Aluminium	38,6	20,5	8,3
(printed)	Silver	28,0	14,9	6,0
(printed)	Bonding agent	11,8	6,3	2,5
Substrate	PET	290,7	154,7	62,3
Adhesive	Acrylate	112,9	60,1	24,2
Fotal with copper antenna		784,2	417,5	168,3
Total with aluminium antenna	without face	555,4	295,7	119,3
Total with printed silver antenna	material	556,7	296,4	119,5

Material con	mposition of RFID	labels		
Label dimensions	mm ²	4171	2219	894
Breakdown of component	Material	Mass [mg]		
Face material	PP	189,3	100,7	40,6
	Paper	375,1	199,6	80,4
Adhesive	Acrylate	84,4	44,9	18,1
IC	Silicon 🔶	0,1	0,1	0,1
IC bumps	Gold 📩	0,01	0,01	0,01
ACP	Epoxy-based			
(Anisotropic Conductive Paste)	material 📩	0,2	0,2	0,2
ACP metal	Nickel	0,01	0,01	0,01
Adhesive	Polyurethane	28,5	15,2	6,1
Antenna	Copper 📩	267,4	142,3	57,3
	Aluminium	38,6	20,5	8,3
(printed)	Silver 📩	28,0	14,9	6,0
(printed)	Bonding agent	11,8	6,3	2,5
Substrate	PET 📩	290,7	154,7	62,3
Adhesive	Acrylate	112,9	60,1	24,2
Total with copper antenna	with out from	784,2	417,5	168,3
Total with aluminium antenna	without face	555,4	295,7	119,3
Total with printed silver antenna	material	556,7	296,4	119,5

Environmental Contaminant

Footprint

- CO2 equivalents
- Organic and inorganic
 - Metals have greater footprint
- Market value assumes extraction and recycling
- Feasible value assumes extraction is impossible

Component	Material	Carbon footprint (values rounded)
Face material	PP	3.50 kgCO ₂ /kg
	Paper	1.35 kgCO ₂ /kg
Adhesive	Acrylate	B.34 kgCO₂/kg
IC	Silicon	85.41 kgCO ₂ /kg
IC bumps	Gold	18,722.00 kgCO ₂ /kg
ACP	Epoxy-based material	3.34 kgCO ₂ /kg
ACP metal	Nickel	5.94 kgCO ₂ /kg
Adhesive	Polyurethane	3.34 kgCO ₂ /kg
Aerial	Copper	3.97 kgCO ₂ /kg
	Aluminium	14.90 kgCO ₂ /kg
	Silver (in print)	155.48 kgCO ₂ /kg
	Bonding agent (in print)	3.34 kgCO ₂ /kg
Substrate	PET	3.18 kgCO ₂ /kg
Adhesive	Acrylate	3.34 kgCO ₂ /kg

Sources: (econvent v2.2 2011); (GEMIS v4.7 2011); (Probst 2011); (

Footprint

- Antenna (aerial)
 - Al lowest CO2
 - Copper ~15% more
 - Silver ~ 110% more
- Gold ~40-85% of value depending on tag size
- Silver is lowest by weight, but greatest value and CO2
- Organic components main CO2 cost due to weight (PET) - Polyethylene Terephthalate (resin - Dacron)

Component	Material	Carbon footprint (values rounded)
Face material	PP	3.50 kgCO ₂ /kg
	Paper	1.35 kgCO ₂ /kg
Adhesive	Acrylate	β.34 kgCO₂/kg
IC	Silicon	85.41 kgCO ₂ /kg
IC bumps	Gold	18,722.00 kgCO ₂ /kg
ACP	Epoxy-based material	3.34 kgCO ₂ /kg
ACP metal	Nickel	5.94 kgCO ₂ /kg
Adhesive	Polyurethane	3.34 kgCO ₂ /kg
Aerial	Copper	3.97 kgCO ₂ /kg
	Aluminium	14.90 kgCO ₂ /kg
	Silver (in print)	155.48 kgCO ₂ /kg
	Bonding agent (in print)	3.34 kgCO ₂ /kg
Substrate	PET	3.18 kgCO ₂ /kg
Adhesive	Acrylate	3.34 kgCO ₂ /kg

Sources: (ecoinvent v2.2 2011); (GEMIS v4.7 2011); (Probst 2011); (

Footprint

- Antenna (aerial)
 - Al lowest CO2
 - Copper ~15% more
 - Silver ~ 110% more
- Gold ~40-85% of value depending on tag size
- Silver is lowest by weight, but greatest value and CO2
- Organic components main CO2 cost due to weight (PET) - Polyethylene Terephthalate (resin - Dacron)

Component	Material	Carbon footprint (values rounded)
Face material	PP	3.50 kgCO ₂ /kg
	Paper	1.35 kgCO ₂ /kg
Adhesive	Acrylate	β.34 kgCO₂/kg
IC	Silicon	85.41 kgCO ₂ /kg
IC bumps	Gold	18,722.00 kgCO ₂ /kg
ACP	Epoxy-based material	3.34 kgCO ₂ /kg
ACP metal	Nickel	5.94 kgCO ₂ /kg
Adhesive	Polyurethane	3.34 kgCO ₂ /kg
Aerial	Copper	3.97 kgCO ₂ /kg
	Aluminium	14.90 kgCO ₂ /kg
	Silver (in print)	155.48 kgCO ₂ /kg
	Bonding agent (in print)	3.34 kgCO ₂ /kg
Substrate	PET	3.18 kgCO ₂ /kg
Adhesive	Acrylate	3.34 kgCO ₂ /kg

Sources: (ecoinvent v2.2 2011); (GEMIS v4.7 2011); (Probst 2011); (

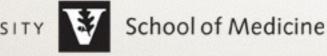
Waste Stream

- Waste stream definitions poorly defined
- Define by composition not waste source
- Industrial and special commercial waste
 - Responsibility
 - Composition
 - Hazardousness
 - Recyclability

Waste Stream Determinants

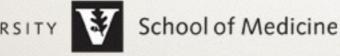
- Tag type/quantity
 - Mostly passive ('21-242B)
 - Active <1%
- Application Closed-loop
 - Reused asset mgmt., intralogistics, security
 - Passive encapsulated, active, or semi-active
- Application Open-loop passive tags
 - Remains with item, accessed by multi systems
 - Consumer packaged goods (CPGs), supply chain

Waste Stream Determinants


- Product-related application area
 - What part of the item is it attached to
 - Item itself, in packaging (paper, plastic...)
- Likely waste stream
 - Active electronic device separate
 - Passive disposed with material

Stream Dependent

- Bound to single material or complex object
- Contribute to stream materials, or contribute unwanted components


Can We Recycle Tags

- Must extract tags from waste streams
 - Eddy current separator/electromagnetic sensor sorting tested
- Required for recycling allocation
- Recycled only if attached to nonferrous metal pre-concentrates

Can We Recycle Tags

- Must extract tags from waste streams
 Eally current separatemeterromagnetic sensor sorting tested
- Required for recycling allocation
- Recycled only if attached to nonferrous metal pre-concentrates

Recycling and Other Recovery

- Energy recovery
 - Thermal conversion
 - Increased emissions
- Material recycling
 - Final purity
 - Extensive purification or decreased yield

Metallurgic Recycling Routes

- Copper/silver economic & environmental targets
- Copper refining can recover gold and silver
 - Aluminum's reductive oxides Value?
- Aluminum refining alloying elements dissolve
 - Silver, gold, copper, silicon, nickel lost

Healthcare Waste and RFID

Healthcare Waste

- Can be health risk
- Mixed with safe waste (80% safe)
- Multiple sources contribute to stream
- I-5 kg of waste/bed/day

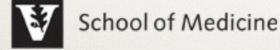
Track What?

- Waste classification
- Waste nature and origin
- Transport date
- Responsible parties
- Ensure materials arrive for incineration
- Illegal dumping

Requirements

• Training

- Infrastructure and standards
- Tag design for different objects
- Data includes nature and location of disposal facility


Pharmaceutical Tagging

- Composition, production date, disposal
- Combat counterfeits
- Recall management
- Control medication flow diversion

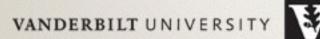
Better Waste Handling

- Waste Classification improved
 - Reduce uncertainty
 - Reduce cost
- Downstream automate sorting decreasing disposal team risk
- Decreased illegal disposal

Barriers

- Some feel process efficient now
- Hazardous waste too little
- Disposal support staff knows already
- Cannot tag organic waste
- RFID may not be the right technology
 - Requires being seen by reader
 - Trash tracking use GSM instead to find trash outside expected path

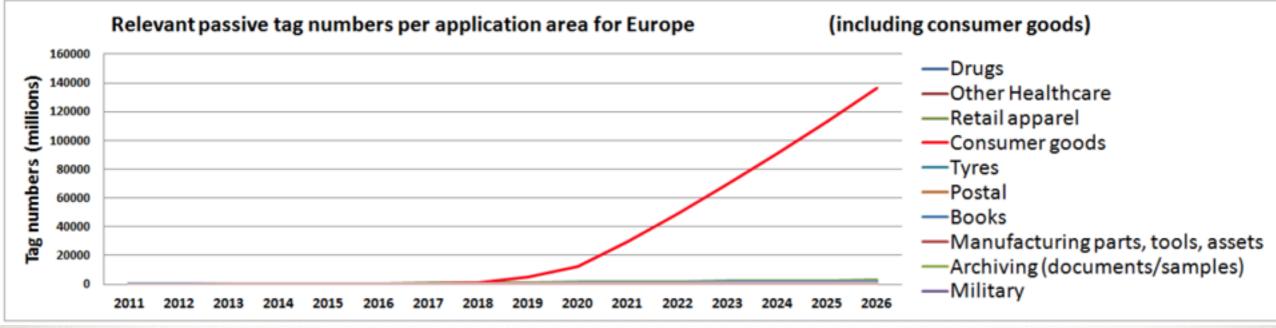
Not Ready?


- Barriers
 - Legislative
 - Environmental
 - Technical
- Organic waste can't tag
- Need predetermined waste streams
- Security access rights management

RAND Conclusion

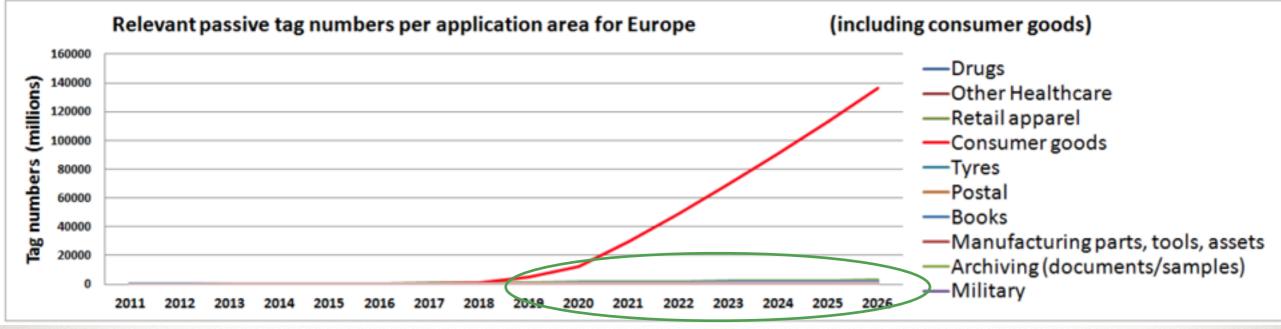
 "The use case of healthcare waste is not considered to have a high potential impact in developed countries because the amount of hazardous waste in clinics is low compared to other waste streams and non-RFID systems are already in place and working. Furthermore, most material only becomes hazardous after a particular use and is thus not tagged adequately beforehand."

Future Trends The Tags

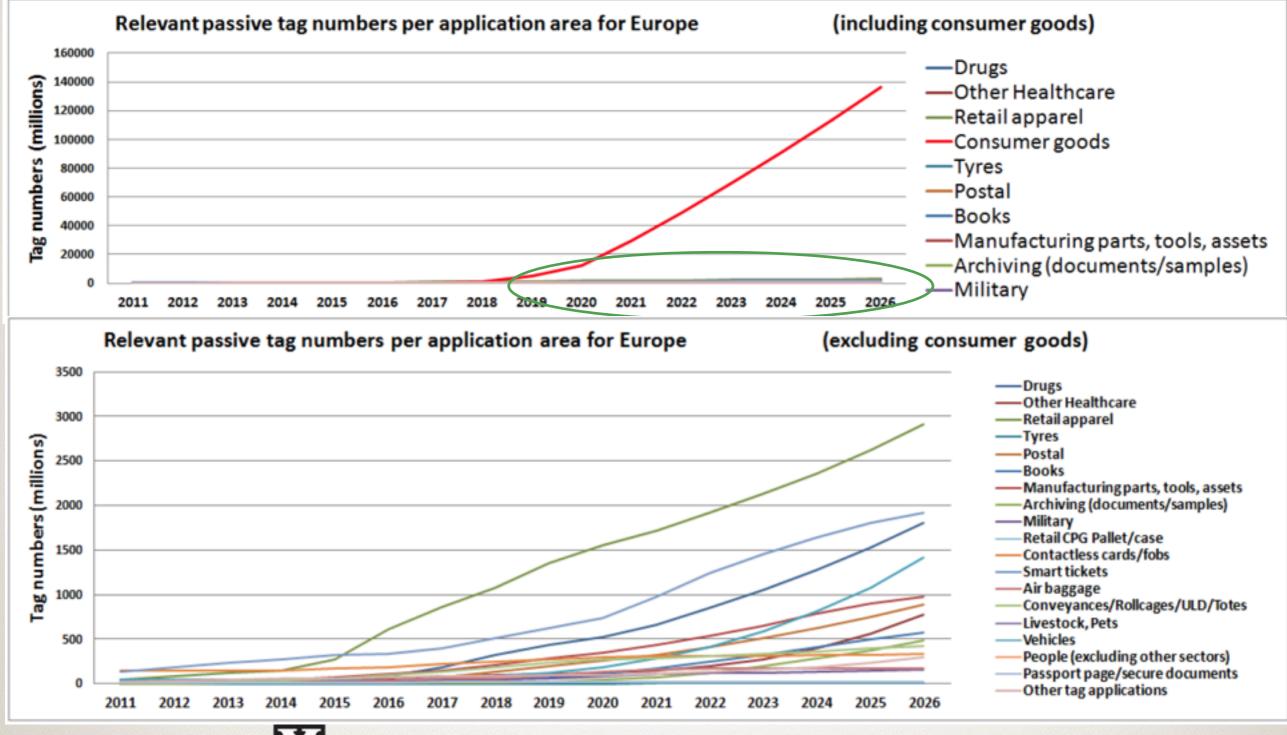

Overall Trends

- Increased RFID tag volume over 10 years
 - Decreased active tag share
- Initial avg price increase until 2015

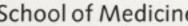
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Active	0.06	0.07	0.08	0.10	0.13	0.19	0.29	0.40	0.53	0.73	0.77	0.79
Passive	2.25	2.81	4.34	6.21	8.18	11.6	18.4	26.0	37.2	73.5	124	243
Total	2.3	2.9	4.4	6	8	11	18	26	37	74	124	243


Table 3. Global market for active vs passive RFID tags (billions)

Passive Tag Applications


VANDERBILT UNIVERSITY School of Medicine

Passive Tag Applications


Passive Tag Applications

School of Medicine

http://vimeo.com/68719955

New ID technologies

- Chipless -
 - Printed semiconductor-based tags
 - >50% production cost savings
 - Passive tags only
- Smart Active Label (SALs)
 - Implement printable battery and sensors
 - Form/cost=passive but function=active

New Material Composition

- Printed electronics
- New antenna materials (conducting inks)
 - Graphene?
- Lower environmental impact materials
- Easier to reclaim

New Processes

- Aluminum new additive process (2010)
 - 10-100x less Aluminum
 - PET substrate obsolete

RFID For Healthcare Waste Disposal

- No process improvement or cost savings
 - Added disposal expense
 - No increased efficiency or waste capture
 - Add contaminants to waste streams
 - Increase environmental costs
- New approach feasibility
 - Technical, Legal, Commercial