

Background AIMS – Anesthesia Information Management System Docusys AIMS - 2007 Basic goals – improve legibility, accessibility, billing AIMS - mainly a DOCUMENTATION system Ilmited "intelligence" to improve quality of care and revenue

Creation of AIMS-based module with the ability to: Analyze real-time data Optimize Return On Investment Guide users to: Improve quality of care Improve patient safety Improve revenue capture Reduce waste and improve efficiency

Clinical Care Item	Before	After
Omneur oure nem	SAM	SAM
Antibiotic initial dose	85%	99%
Antibiotic redose	65%	95%
Beta blocker SCIP measure	62%	97%
nvasive line capture	-	~\$140,000
dditional compliant records	-	~1200/yr
nhalation agent savings	-	~\$120,000
Saps (>15min) in blood ressure monitoring	15.7 /1000 cases	6.7 /1000 cases
Blood pressure management:		
Hypotensive – High MAC	4.9 /1000 cases	2.3 /1000 cases
lypertensive – Phenylephrine	30.3 /1000 cases	21.1 /1000 cases

Slucose management								
	Glucose compliance		Correct Insulin		Difference between actual and suggested insulin doses			
	$N_{p}(N_{i})$	%	N _n (N _i)	%	N _o	Mean±SD		
Baseline	772 (2097)	52.6%	1296 (3383)	13.5%	1296	-1.19±1.58		
Interventi on	1227 (3726)	71.2%	1844 (5482)	24.4%	1844	-1.11±1.50		
	p<0.001*		p<0.001*		p=0.13**			
Interv SAM off	545 (1539)	57.4%	950 (2454)	14.0%	950	-1.28±1.14		
Interv SAM on	682 (2187)	80.8%	894 (3028)	33.2%	894	-0.93±1.79		
	p<0.001*		p<0.001*		p<0.001**			
	"permutation test," N _i = number of inst	* two sample t-le ances of hourly g	est, *** chi-squared test; ducose measurement pa	N _p = number of o irs or insulin adji	cases, ustments			

Case-based protoc	cols
Project Improves Ou Pediatric Traumatic	
• Rare cases • Complicated car	e guidelines

Lessons learned

- Real-time notification is effective in changing and sustaining provider behavior
- Greater effectiveness if care item/protocol has universal "acceptance" from providers
- Data latency is a severe disadvantage
- Alert fatigue is a concern.
 - Talk with providers, observe behavioral patterns, use data

Current focus / Future directions Decision Support Interface with hospital EMR Enhanced library of functions Voice prompts Model and protocol based decision support Glucose management Fading memory algorithm Continuous glucose monitor trial Checklists & guidance Framework for building checklist Framework for building decision tree Navigation and guidance Medication/Blood safety Barcoding of infusions Blood product verification

Interface and database programmer: Shu-Fang Newman, MS (UWMC) Clinical Advisors and Collaborators Decision Support: Howard A Schwid, MD (UCI) Gene N Peterson, MD, PhD (VCU) Andrew Bowdle, MD, PhD (UWMC) Srdjan Jelacic, MD (UWMC) Checklist/Guidance: Andrew Bowdle, MD, PhD (UWMC) Daniel Boreman(Boeing) Srdjan Jelacic, MD (WMC) E Patchen Dellinger, MD (Surgery, UWMC)

9