

I have received

- lecture support
 travel reimbursements
 equipment loans
 consulting fees
 meeting organizational support (NAVAt)
- from basically all companies involved with inhaled agent delivery:

AbbVie, Acertys, Air Liquide, Allied healthcare, Armstrong Medical, Baxter, Draeger, GE, Hospithera, Heinen und Lowenstein, Intersurgical, Maquet, MDMS, MEDEC, Micropore, Molecular, NWS, Philips, Quantium Medical

Target controlled low flow anesthesia

A means to visualize drug interactions and guide depth

How Technology Will Secure the Future of Inhalation Anesthesia

- 1. Why low flow (LFA)
- 2. Why target control
- 3. Why prediction displays
- 4. The smartest pilot and the really smartest pilot

How Technology Will Secure the Future of Inhalation Anesthesia

- 1. Why low flow (LFA)
- 2. Why target control
- 3. Why prediction displays
- 4. The smartest pilot and the really smartest pilot

Low flow anesthesia makes sense

- less waste
 less pollution
 less costs
 heat & humidity

O ₂ uptake	180 (37) mL/min	
N ₂ O uptake	200 100 m L/min (10' 1h) \rightarrow	
Desflurane (6% F _A , 1h)	$12.5 \text{ mL liquid} < \frac{10.3 \text{ mL by patient}}{2.2 \text{ mL circuit + lum}}$	gs
Sevoflurane (2% F _A , 1	h) 7.0 mL liquid $< \frac{6.0 \text{ mL by patient}}{1.0 \text{ mL circuit + lung}}$	gs
	Robinson G et al. J Appl Physiol 2004;97:960-66 De Cooman S et al. IMAC Res Notes: 2014 July 23.74 Severinghan J J Clin Invest 1945;33:1183-9 Hendricks J et al. Anet Annali [997;84:143-8 Hendricks J et al. Ber J Amaesth 1998;81:495-501	169

- less waste
- less waste
 less pollution
 less costs
- heat & humidity

All agents	impede	infrared radi	ation to	o outer s	pace (G	WP)
Global e cars	ffect	= 1 coal fire = 1 r	d power nillion p	r plant bassenge	r	
Table 1. Summary of F Nitrous Oxide and the	Radiative Prop Halogenated /	erties, Atmospheric Anesthetic Gases	Lifetimes,	and Global V	/arming Pote	ntials for
				GWP		
Compound Nitrous oxide, N ₂ O Halothane, CF,CHCIBr Enflurane, CHFCICF ₂ OCF ₂ H Isoflurane, CH ₂ CHCOCHF ₂ Destfurane, CF ₂ CHFOCHF ₂ Sevoflurane, (CF ₄) ₂ CHOCH ₂ F	Atmospheric lifetime (y) 114 ⁸ 1.0 ⁸ 4.3 ⁸ 3.2 ¹³ 14 ³ 1.1 ³	Radiative efficiency (W m ⁻² ppb ⁻¹) 0.00303 ⁸ 0.165* 0.465* 0.447* 0.453 ¹³ 0.469 ¹³ 0.351 ¹³	20-y time horizon 289 ⁸ 190° 2370° 1800 ¹³ 6810 ³ 440 ³	$\begin{array}{c} {\color{red} \textbf{100-y time} \\ \textbf{horizon} \\ 298^8 \\ 50^{a,b} \\ 680^{a,d} \\ 510^{13} \\ 2540^3 \\ 130^3 \end{array}$	500-y time horizon 153 ⁸ 20° 210° 160 ¹³ 130 ³ 40 ³	0zone depletion potential 0.017 ¹⁷ 0.4 ^{a.c} 0.01 ^{a.c} 0 ^{a.c} 0 ^{a.c}
			_	Sulbaek Anderse	n MP. Anesth An	alg 2012;114:1081-5

Low flow anesthesia makes sense

- less waste
- less pollution
- less costs
- heat & humidity

Then why

- the hesitancy to use low flow fresh gas flows (FGF) ? the intuitive use of 1.5 2 L/min FGF ?
- the ill defined fear of FGF << 1L/min ?

Compound A?

Hard to believe this continues to be an issue

Sevoflurane used routinely with closed-circuit anesthesia

If medicolegal issue: use Amsorb Plus, SpiraLith, LithoLyme

The reasons for the hesitancy to use FGF $\leq 1L/min$ explain why we need target control delivery of agents and O₂

How Technology Will Secure the Future of Inhalation Anesthesia

1. Why low flow (LFA)

2. Why target control

LFA more convenient, less distraction
 conventional LFA teaching = inconsistent use
 safety agent

 O_2

- 3. Why prediction displays (drug interactions, times)
- 4. The smartest pilot and the really smartest pilot

Clinical Example

How to adjust vaporizer setting (F_D) to maintain sevoflurane F_A at 1.3% with FGF from 0.3 to 8 L/min O_2/N_2O with conventional machine (ADU[®])?

Hendrickx J, Van Zundert A, et al. Anesthesiology 1998; 89 : A518

This "dilutional" effect becomes more prominent with FGF < 1.5-2 L/min With lower FGF, we have the impression to "lose control" This is why we intuitively use FGF = 1.5 - 2 L/min: F_D still matches F_I

FGF << 1 L/min not frequently used because

- more vaporizer adjustments needed

FGF << 1 L/min not frequently used because

- more vaporizer adjustments needed
- it becomes harder to predict \mathbf{F}_{D} in the individual patient

FGF << 1 L/min not frequently used because

- more vaporizer adjustments needed
- it becomes harder to predict ${\rm F}_{\rm D}$ in the individual patient
- choice of carrier gas effect F_{D} more pronounced

Hendrickx et al. Anesthesiology 2002;97:400-4

Clinical implication:

potentially more distractive especially right after induction

more attention needed

 \rightarrow over- and under- dosing

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812 AUGUST 18, 2011 VOL. 365 NO. 7

Prevention of Intraoperative Awareness in a High-Risk Surgical Population

Michael S. Avidan, M. B., B.Ch., Eric Jacobsohn, M.B., Ch.B., David Glick, M.D., M.B.A., Beth A. Burnside, B.A., Lini Zhang, M.D., Alex S. Ever, M.D. Stephen Gradwohl, E.S., Xan Lini, Ph.D., Ben J. Palanca, M.D., Ph.D., Michael O'Connor, M.D., Alex S. Ever, M.D. Stephen Gradwohl, E.S., Xan Lin, Ph.D., Ben J. Palanca, M.D., Ph.D., and George A. Mashour, M.D., Ph.D., for the BAG-RECALL Research Group.⁴

- Prospective study
- Target: $\geq 0.7 \text{ MAC}$

Overall, during the

maintenance of anesthesia,

the ETAC was greater than 0.7 age-adjusted MAC a median of 84.8% of the time (interquartile range, 67.2 to 95.3).

15.2% was underdosed

Obvious solution: target F_A

Let machine manage FGF and F_{D} to get target F_{A}

Target control makes the use of low flow very simple, so we now use it routinely

How Technology Will Secure the Future of Inhalation Anesthesia

- 1. Why low flow (LFA)
- 2. Why target control - teaching alone insufficient - more convenient, less distraction \rightarrow consistent use - safety agent (over and under dosing) O₂
- 3. Why prediction displays (drug interactions, times)
- 4. The smartest pilot and the really smartest pilot

Protection Against Accidental Delivery of Hypoxic Gas Mixtures ANSI Standard 51.13.1 The anesthesia workstation shall be provided with - a device to protect against an operator selected delivery - of a O₂/N₂O mixture - having < 21 % O₂ in the fresh gas <u>or</u> in the inspired gas

Machine standards are outdated:

- effect of rebreathing not taken into account
- no requirements for $O_2\!/air$ mixtures

Machine standards are outdated:

- effect of rebreathing not taken into account

- no requirements for $\mathrm{O}_2/\mathrm{air}\ \mathrm{mixtures}$

Worse still: hypoxic guards perform worst with FGF many of us are comfortable working with: 1-2 L/min!

EJA	Eur J Anaesthesiol 2015; 32:371-373
EDITORIAL	
O ₂ , anybody?	
Jan F.A. Hendrickx, Andre M. De	Nolf and Stefan De Hert

Where do we go from here? Do we require even more stringent conventional hypoxic guard criteria? This is likely not a very good option, because mass balances predict that even more stringent criteria may not prevent a hypoxic FQ2 when, for example, parient oxygen consumption is higher than normal. Also, the configuration of the anaesthesia cricle system may influence the effects of rebreathing. Therefore, we propose that all manufacturers develop's mark 'hypoxic guard systems no the basis of software and measured FQ2 (so possibly the endsume for the system of the system of the system of the considered. First, the modern anaesthesia workstation with an electronic gam size and in automatic (target control) mode allows us to set a target FQ2 (or endexpired Q; concentration), and its algorithms will set the required individual fresh gas flows using feedback control hypoxic guard System. Currently, only three suburion because in this mode, there is no need for a conventional from measure FQ2. This is the ultimate solution because in this mode, there is no need for a conventional rarier gases based on measure FQ2 or end-exh workstations are available; the Aixys, the Zeus and the FLOWstations are available; the Aixys, the Zeus and the FLOWstations are available; the Aixys the FQ2 or end-exh workstations are available; the Aixys the Zeus and the station decorrentration, develop overruling the anaesthesia provider. Currenty, only one such workstation is available, the FLOW-i. If FQ2 to at least 25% within 73s after its activation.⁹

Solution = target F_1O_2 or F_AO_2 directly

ITF.0, doesn1 horease 2 line

1


```
1. Why low flow (LFA)
```

```
2. Why target control
```

LFA more convenient, less distraction
 conventional LFA teaching = inconsistent use
 safety agent

 O_2

3. Why prediction displays (drug interactions, times)

Abstract 3 - Monitori	: 221 ng: Equipme	nt and Comp	uters		ESA 2013
Drug interactions in the stimuli company standing of the standing of the standing of the standing of Groningen, Jaiversity of Groningen, standing of Groningen, standing of Groningen, standing of Groningen, standing of Groning of Gr	on models are ared to individu	better predictor al measured pa M.M.R.F., Luginbühl M., V r Groningen, Dept of Anae	rs of tolerance/ irameters irreecke H.E.M. sthesiology, Groningen, N	response to no	oxious
	U	NSRI	Sevo	Remi	BIS
SAS	U 96%	NSRI 96%	Sevo 89% *	Remi 60% *	BIS 95%
SAS TET	U 96% 96%	NSRI 96% 94%	Sevo 89% * 79% *	Remi 60% * 69% *	BIS 95% 84% *
SAS TET LMA	U 96% 96% 98%	NSRI 96% 94% 95%	Sevo 89% * 79% * 81% *	Remi 60% * 69% * 63% *	BIS 95% 84% * 83% *

Smartest Pilot

Enter

- patient covariates
- surgeon's covariates (procedure, duration)
- costs of drugs, CO₂ absorbent, other
- adjust anticipated wake-up time

Machine will steer drug adminstration

Margin of error for inhaled agents: can be washed-out

Smartest Pilot

Enter

- patient covariates surgeon's covariates (procedure, duration)
- costs of drugs, CO_2 absorbent, other
- adjust anticipated wake-up time

Machine will steer drug adminstration

Margin of error for inhaled agents: can be washed-out

Really Smartest Pilot

Us!

Biological variability Equipment failure

Still:

"One of the most important reasons we need anesthesiologists (at least for now) is that only anesthesiologists can determine what drugs and especially what combination of drugs (and their proportioning) will be used in a specific patient. This is something that can (will) be taken over by smart equipment, but not quite yet..."

> Andre De Wolf Northwestern University Chicago, IL, USA

How Technology Will Secure the Future of Inhalation Anesthesia

- 1. Why low flow (LFA)
- 2. Why target control
 - LFA more convenient, less distraction
 conventional LFA teaching = inconsistent use
 safety agent O₂
- 3. Why prediction displays (drug interactions, times)
- 4. The smartest pilot and the really smartest pilot

