Bio-3DP: Challenges and Opportunities

Wei Sun, Ph.D.

Albert Soffa Chair Professor Drexel University, USA

National "Thousand-Talent" Distinguished Professor Tsinghua University, China

3D Cell Printing for In Vitro Biological Model Society for Technology in Anesthesia Annual Meeting 2016.1.9

Drexel University

Philadelphia, PA, USA

Drexel a bundred twenty years ago

A private university founded by Anthony Drexel in 1891

- ~27,000 students
- College of
 - o Engineering
 - o Business
 - Medicine
 - o Law
 - o Science, IST, Education, etc
- Largest Engineering and Medical Colleges as private universities in US

Biomanufacturing Engineering Research Center

Bio-Manufacturing Engineering Research Institute 清华大学生物制造工程研究所

- Biomanufacturing and Rapid Forming Key Laboratory Beijing
- International Collaborative Center for Biomanufacturing Beijing
- Biomanufacturing Engineering Laboratory Shenzhen
- 8 Faculty: 3 Full P, 3 Associate P, 1 Assist. 1 Senior Engineer
- 4 Post Doctors; > 40 graduate students

3D Printing Process

3D Printing

StereoLithography Apparatus (SLA)

Selective Laser Sintering (SLS)

- Fusing Powdered thermo-elastic material with heat from laser beam.
- A thin layer of powered thermoplastic material is evenly spread, by a roller, over the build region. Then, the pattern of the corresponding part cross section is "drawn" by the laser on the powder surface.
- With amorphous materials, the laser heat causes powder particles to soften and bind to one another at their points of contact, forming a solid mass. This process is called fusing or sintering.

Fused Deposition Modeling (FDM)

Stratasys, Eden Prairie, MN

- FDM uses thermoplastic wire-like filaments which are melted in the delivery head.
- The material is extruded from the head and deposited on a layer-by-layer basis.
- Rapid solidification (approximately 1/10 second) of the molten laminate material from the modeling filament.
- Favored material ABS plastic.

3D Printing

Product Innovation

http://www.cnbeta.com/articles/2 43136.htm

英发明世界首辆通过电脑打印出来的自行车(图)

来源: 北京科普之窗 【字体:大中小】

"空气自行车"比普通钢铝结构自行车轻65%,但却一样坚固。

3DP vase

http://www.3dprint.cn/

3DP cake and chocolate http://www.guokr.com/article/4170/

3D Printing

Innovation, Customization, Rapid Realization

3D Cell Printing

Directly Assembled 3D Biological Model by 3D Cell Printing

- **RGD** Modified Surface
 - **Unmodified Surface**
- Fibroblasts (Encasulated)
 Endothelial (Applied to Surface)

http://www.angioworld.com/angiogenesis .htm

Direct Assembled Biological Model for Angiogenesis

Morss-Clyne & Sun: 2008 Biomaterial Congress; Tissue Engineering, 2010, Biofabrication, 2010

Bio-3D Printing

"Bio-3D Printing" uses biomaterials, cells, proteins or other biological compounds as building blocks to 3D Printing personalized (biomimetic) structures or *in vitro* functional biological models

--- according to a patient specific physiological structure, the designed cell microenvironment, or the required biological functions.

Bio-3D Printing: 4 Level Applications

- According to the technological development
- According to the requirements to biomaterials

2007~present Cell as biomaterials			
	Forth Level		 In vitro biological models Examples: tissue constructs, disease/drug models
2003~2009		09	Biocompatible, degradable and absorbable
 Third Level Tissue scaffolds Examples : Bone scaffolds, skin scaffolds 			
2001~2005 Biocompatible, but may not be degradable			
Second Level • Permane • Example		• Perman • Example	ent implants es : hip replacements, artificial knees
1995~2000 No requirement for material biocompatibility			
First Level • Bio-medical • Examples: RF		-medical i imples: RP	modeling, in vitro medical devices 9 models for surgical planning, surgical guides

Application Level 1 to Level 3:

Enabling technologies Translational Research Commercialization

Bio-3DP: Personalized Medical Modeling and Implants

Application: plastic surgery, surgical planning, prosthesis

Biomodeling of Cleft Palate Deformities

- Dr. HD Nah (CHOP)

Biomodeling of Epileptic Regions of Brain with Electrodes - Dr. Sperling (TJU)

Bio – 3D Printing Customized Implants

Scaffolds by Conventional 3DP Processes

SLA builds conceptverification models of its tensegrity structures

70 µm in diameter.

SJ Lee & DW Cho (POSTECH, Korea, Micro-SLA))

(Das & Hollister Group, UM\, SLS)

D. Hutchmacher group, FDM)

Scaffolds Fabricated by Precision Extrusion Deposition Technique

Material: Poly-ε-Caprolactone (PCL)

Average pore size: ~ 200 μm Smallest strut: 100 μm

Darling et al, JBMB, 2005 Wang, et al, RPJ, 2005 Starly et al, CAD 2006 Shor et al, Biomaterials, 2007

Nude Mouse SC Osteogenesis (collaborate with Dr. H. An, MUSC)

Tissue Scaffold Fabrication - Direct Methods by 3DP

Additive Manufacturing (3DP)

- CT/MRI CAD SFF:
 - FDM
 - SLS
 - 3DP Theriform Process
- Advantages:
 - Biomimetic
 - No restriction on shape
 - High control capability
 - Consistent reproducible
- Disadvantages:
 - Limited resolution
 - Not a cell-friendly environment
 - Harsh Heat
 - Toxic Solvents
 - Non-Sterile

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Enabling Engineering Processes for Cell Printing/Assembly

Cell Deposition for Freeform Fabrication of 3D Tissue Constructs

基于生物3D打印的仿生生物构建模型

将细胞,干细胞, 生长因子和细胞基质材料用细胞打印方 式在三维空间进行可控组装,制造体外生物结构体模型,

Multi-nuzzle 3D Cell Deposition System

40 layers, 275 micro strand pattern, 38 micro single strand

Cell deposition, cellular thread, cell viability

Multi-nozzle systems:

- Precision extruding
- Solenoid-actuated
- Piezoelectric
- Pneumatic syringe
- Pneumatic spray

Biopolymer:

Hydrogel-

Alginate/Chitosan

- Fibrin, Collagen
- Matrigel

- Endothelial
- Cardiomyoblasts
- Fibroblast
- Chondrocytes
- Osteoblasts
- Sm. muscle cells
- Hepatocyte
- MCF-7
- Huh7.5.1

US Patent #: 8639484 B2 33

Heterogeneous Bio-Printing Multi-nozzle Direct Cell Printing

X Axis

Nozzles

- Chang, R., Emami, K., Wu, H. and Sun, W., "Biofabrication of a Three-Dimensional Liver Micro-Organ as an In Vitro Drug Metabolism Model", Biofabrication, 2, 2010
- Chang, R., Nam, J. and Sun, W., "Direct Cell Writing of 3D Microorgan for *In Vitro* Pharmacokinetic Model", Tissue Engineering, 2008

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Bioprinting Micro Liver Organ for Anti-radiation Drug Metabolism Study (NSAS-USRA-09940-008)

NASA's Interest - Safe plenary exploration & Mars Landing

Micro-Organ Device for drug conversion study (A, A', A'' with multiple microorgans) Schematic drug metabolic conversion from EFC → HFC
Sinusoid Flow Pattern Design to Biomimic Liver Physiology

- hepatic vascular system (capillaries) is configured in sinusoidal pattern → design the sinusoidal micro-fluidic channel patterns to biomimic *in vivo* liver microstructure.
- Channel dimensions and strut widths vary from 50μm to 250μm, flow varies from 1ml/min to 5ml/min.

Bioprinting Micro Liver Organ Models

Liver Tissue Construct Physiological Structure Formation

Process Parameters

- Valve Type: Pneumatic Microvalve
- Pressure: 2.0 psi
- Motion Velocity: 10 mm/s
- Alginate Conc.: 3.0% w/v
- CaCl₂ Crosslinking Conc.: 5.0% w/v
- Nozzle Tip Size: 200 um

Integration of Bioprinted Liver Chamber with Microfluidic Device

Results for Drug Metabolism Study

- Effect of cell type
- Effect of varying material & media volume
- Effect of media concentration
- Effect of cell confluency
- Effect of drug flow perfusion
- Effect of an alternative biopolymer HepG2 cells metabolism

* HepG2 cells metabolize EFC better than C3A subclone

Related Patents and Publications

Chang et al, Tissue Engineering, 2007 & 2008, Snyder et al, Biofabrication (2011, 2014), Hamid et al, Biofabrication (2014)

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

3D Cell Direct Assembly

(Tsinghua University, China)

low-temperature forming chamber

double-nozzle unit

material-mixing single-nozzle unit

Single Nozzle System

Dual Nozzle System

Assembly Cancer Cells for In Vitro Tumor Model

(NSFC 2012 E05 Key Research Project; Tsinghua)

Biomaterials: Gelatin-Alginate-Fibrin

Cells: Hela

Printing of 3D cervical tumor models

Cellular morphology in 2D vs 3D cultures

Scale bar, 200 µm

Scale bar, 50 µm

Results: Compared with 2D planar culture, Hela cells in 3D Hela/hydrogel constructs showed spheroid morphology on day 5 and day 8.

Zhao Y, Yao R, Ouyang L, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro , Biofabrication, 2014, 6(3): 035001.

Cell proliferation

Results: Hela cells in 2D culture plates proliferated more slowly than in printed 3D constructs.

MMP expression

Results: Hela cells in 3D cultures showed enhanced expression of MMP-2 and MMP-9 compared with 2D planar culture.

Chemoresistances

Results: Enhanced chemoresistances were observed in 3D printed Hela/hydrogel constructs compared with 2D planar cell culture

Results of A549 Gene Chip

(unpublished data)

• 3D vs 2D: up-regulation 350

1	ProbeName	FC ([3D] vs [2D])	Log FC ([3D] vs [2D])	Regulation ([3D] vs [2D])	2D.txt:gProcessedSignal(normalized)	3D.txt:gProcessedSignal(normalized)	GeneSymbol
2	A_23_P93641	5184.368	12.339952	up	-6.169976	6.169976	AKR1B10
3	A_33_P3380992	2573.9856	11.329788	up	-5.664894	5.664894	AKR1B15
4	A_24_P129341	2122.8735	11.051803	up	-5.5259013	5.5259013	AKR1B10
5	A_33_P3238433	927.3118	9.856911	up	-4.9284554	4.9284554	ALDH3A1
6	A_23_P207850	613.54785	9.261032	up	-4.630516	4.630516	TNS4
7	A_23_P3038	525.1893	9.036694	up	-4.518347	4.518347	GPX2
8	A_23_P20484	506.50415	8.98443	up	-4.492215	4.492215	FGL1
9	A_33_P3249046	378.7719	8.565186	up	-4.282593	4.282593	CLDN2
10	A_24_P42136	305.03247	8.252819	up	-4.1264095	4.1264095	KRT18
11	A_23_P373708	242.86235	7.923995	up	-3.9619975	3.9619975	KRT18P55
12	A_23_P208788	228.82758	7.838117	up	-3.9190586	3.9190586	C19orf33
13	A_23_P24129	180.36168	7.494749	up	-3.7473745	3.7473745	DKK1
14	A_33_P3209229	179.32521	7.4864345	up	-3.7432172	3.7432172	RAB26
15	A_23_P140450	156.06555	7.2860084	up	-3.6430042	3.6430042	SLC27A2
16	A_33_P3369844	151.19601	7.2402763	up	-3.6201382	3.6201382	CD24
17	A_24_P277367	146.88818	7.1985745	up	-3.5992873	3.5992873	CXCL5
18	A_32_P78681	133.54102	7.061139	up	-3.5305696	3.5305696	GLP2R
19	A_23_P58266	131.67162	7.0408006	up	-3.5204003	3.5204003	S100P
20	A_32_P8546	129.79428	7.020083	up	-3.5100415	3.5100415	LINC00473
21	A_23_P14083	123.01455	6.942685	up	-3.4713426	3.4713426	AMIGO2
22	A_32_P151544	122.290245	6.9341655	up	-3.4670825	3.467083	KRT18
23	A_23_P66798	121.98167	6.9305205	up	-3.4652603	3.4652603	KRT19
24	A_23_P359214	117.42778	6.87563	up	-3.437815	3.437815	LINC00842
25	A_21_P0000121	110.744	6.791085	up	-3.3955424	3.3955424	C19orf81
26	A_33_P3307495	106.93456	6.7405844	up	-3.3702922	3.3702922	STRA6
27	A_24_P190472	103.700806	6.6962833	up	-3.3481417	3.3481417	SLPI
28	A_33_P3368750	98.96262	6.628812	up	-3.314406	3.314406	PAQR5
29	A_33_P3398331	97.916435	6.613479	up	-3.3067396	3.3067396	MMP24
30	A_23_P207507	85.050835	6.4102535	up	-3.2051268	3.2051268	ABCC3
31	A_33_P3387621	78.90782	6.3020964	up	-3.1510482	3.1510482	RHPN2
32	A_33_P3262191	76.12815	6.250358	up	-3.125179	3.125179	CPNE7

Results of A549 Gene Chip

(unpublished data)

• 3D vs 2D: down-regulation 669

1	ProbeName	FC ([3D] vs [2D])	Log FC ([3D] vs [2D])	Regulation ([3D] vs [2D])	2D.txt:gProcessedSignal(normalized)	3D.txt:gProcessedSignal(normalized)	GeneSymbol
2	A_23_P64873	-13207.168	-13.6890335	down	6.8445168	-6.8445168	DCN
3	A_33_P3304668	-5152.3115	-12.331004	down	6.165502	-6.165502	COL1A1
4	A_23_P69497	-2104.4207	-11.039207	down	5.5196037	-5.5196037	CLEC3B
5	A_23_P110791	-1875.3447	-10.87294	down	5.43647	-5.43647	CSF1R
6	A_33_P3215640	-1821.5233	-10.83093	down	5.415465	-5.415465	PI16
7	A_24_P935491	-1591.2158	-10.635914	down	5.317957	-5.317957	COL3A1
8	A_19_P00323082	-1396.927	-10.448041	down	5.2240205	-5.2240205	H19
9	A_23_P105562	-1376.2347	-10.426511	down	5.2132554	-5.2132554	VWF
10	A_23_P100660	-1123.8364	-10.134216	down	5.067108	-5.067108	SERPINF1
11	A_24_P270460	-997.88214	-9.962726	down	4.981363	-4.981363	IFI27
12	A_33_P3708413	-957.8089	-9.903594	down	4.951797	-4.951797	MFAP5
13	A_33_P3400763	-901.4472	-9.816099	down	4.9080496	-4.9080496	PLIN4
14	A_23_P111583	-820.0962	-9.679649	down	4.8398247	-4.8398247	CD36
15	A_33_P3220837	-808.1203	-9.658426	down	4.829213	-4.829213	MAFB
16	A_23_P161439	-711.2433	-9.474199	down	4.7370996	-4.7370996	ADIRF
17	A_23_P372834	-641.63336	-9.325605	down	4.6628027	-4.6628027	AQP1
18	A_32_P140139	-625.6108	-9.289122	down	4.644561	-4.644561	F13A1
19	A_32_P74409	-596.08203	-9.219367	down	4.6096835	-4.6096835	C11orf96
20	A_23_P152305	-575.42334	-9.16848	down	4.58424	-4.58424	CDH11
21	A_23_P214080	-551.56665	-9.107391	down	4.5536957	-4.5536957	EGR1
22	A_23_P48596	-512.8726	-9.002457	down	4.5012283	-4.5012283	RNASE1
23	A_23_P47709	-473.4242	-8.88699	down	4.443495	-4.443495	FOLR2
24	A_23_P203173	-462.28973	-8.8526535	down	4.4263268	-4.4263268	IL10RA
25	A_23_P200741	-446.05472	-8.801077	down	4.4005384	-4.4005384	DPT
26	A_33_P3258362	-441.1705	-8.7851925	down	4.3925962	-4.3925962	HBA2
27	A_23_P3312	-392.2162	-8.615505	down	4.3077526	-4.3077526	ISLR
28	A_33_P3295203	-382.8008	-8.58045	down	4.290225	-4.290225	HAS1
29	A_33_P3262635	-382.31528	-8.578619	down	4.2893095	-4.2893095	CECR1
30	A_33_P3409062	-381.56693	-8.575792	down	4.287896	-4.287896	TYROBP
31	A_23_P131676	-380.94693	-8.573446	down	4.286723	-4.286723	ACKR3
32	A_33_P3246833	-379.9234	-8.569565	down	4.2847824	-4.2847824	IL1RN

Results of A549 Gene Chip

(unpublished data)

- Overall conclusion:
 - In 3D printing models compared with 2D culture, genes related to tumor cell proliferation, drug resistance, invasion and migration were mostly upregulated
 - In 3D printing models compared with 2D culture, genes related to tumor cell apoptosis, cytoskeleton synthesis were mostly upregulated
 - Genes related to cell morphology and cell-matrix interactions were drastically changed in 3D model compared with 2D culture.

Epithelial-Mesenchymal Transitions 上皮-简充质转变 (EMT) study

Invasion

• Tumor metastasis is the main cause (90%) lending to end stage death:

To study tumor metastasis by our *in vitro* model

 A process by which epithelial cells *lose their cell polarity* and cellcell adhesion, and gain migratory and invasive properties to become mesenchymal cells

Metastatic colonization

Steeg, P. S. *Nature medicine* (2006) 12(8), 895-904.

Summary of EMT Study

- EMT phenomenon was observed in *in vitro* cervical tumor model established by three-dimensional printing of Hela cells from the following:
 - Morphology
 - Protein
 - Gene
- The down-regulation of epithelial marker E-cadherin was significant higher in 3D than 2D sample;
- The up-regulation of mesenchymal markers N-cadherin and snail were significant higher in 3D than 2D sample; however the up-regulation of vimentin in 3D and 2D samples were similar.
- These 3D printed cervical tumor model could be used for further cancer progression study: tumor metastasis in co-culture model.

On-going study

- It is still a simple tumor-like model, not a real tumor model
 - introducing blood vessels
 - printing heterogeneous cells
 - looking at cell communicates
- Clinical:
 - for personalized cancer treatment
 - cancer drug testing

Assembly Cancer Cells for In Vitro Tumor Model (NSFC 2012 E05 Key Research Project; Tsinghua)

Printing Embryonic Stem Cells

打印工艺摸索流程

Printing Embryonic Stem Cells

Cell sensitivity with physicochemical stimulate

The same printing parameters

7.5%Gel+1%alg+1million cells/ml; chamber temp 22.5C;printing flux 3.4ul/s; printing speed 5mm/s

Hela Cell

ES Cells

ESC proliferation and **EB** formation

EB formation within gels

Maintenance of pluripotency

Nearly 100% cells maintain pluripotency

The maintenance of pluripotency after one week Bar:50um

Comparison with other methods

- EB size can be controlled by culture time and bioink composition
- EB yield: higher than hanging-drop (10~1000X) and suspension (10~100X)
- EB uniformity: better than suspension (3X)

Ongoing work

- ESCs early differentiation in the construct
 - Study the factors that influence the differentiation fate of three germ layers
 - Like EB size, printing parameters
- ESCs induced differentiation in the construct for microtissue fabrication and regulation studies

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

We may need a different biology ...

 A knowledge gap for understanding of 3D printed biological Model

Beyond the developmental biology and petri dishes ...

Challenge in Materials ...

Lack of Bio-INK and/or cell delivery medium

- go with cells (as the cell delivery medium)
- grow with cells (as supporting ECM and regulators
- Limited material available: Hydrogel, Alginate, Collagens etc

Structure and Function

Challenge in Printing ...

- Printing multi-type cells simultaneously
- Printing/patterning single cell
- Effect of printing process to cells
 - temperature controlled environment
 - cell injury
- Post printing
 - structure integrity and stability
 - 3D <u>co-culture</u> to simulate human physiology

Evolving of Tissue Engineering

Tissue Science & Engineering*(2007)

"The use of physical, chemical, biological, and engineering processes to control and direct the aggregate behavior of cells"

- Regenerative Medicine
 more on cells, particularly on Stem Cells
- > 3D Physiological or Disease Models
 •For better study disease pathogenesis and for developing molecular therapeutics
- Pharmacokinetic Models to replace animal testing
 For drug screening and testing
- Cell/Tissue on Chip
 For detection of bio/chemical threat agents

3DP In Vitro Model for Drug Testing

- Limited human clinical trials
- Not feasible for testing
- Ethic issues

模

型

体模型

动

物

模

型

维

模

- Cell micro-environment different from human
- Different immune system
- Different from human clinical trials
 - Not a true physiological environment
 - Difficult to simulate 3D tissue
 - Not reliable to cancer drug testing
 - Simulated physiological model
 - More close to 3D human tissue
 - Reduce using animals
The Needs of Bio-3DP: Tissue/Organ Printing for Regenerative Medicine

Printing Body Parts

A machine that prints organs is coming to market Feb 18th 2010, The Economist print edition

Acknowledgements

Drexel University / Tsinghua University

Graduate Assistants and Colleagues Collaborators

Funding Support:

NSF, DARPA, NASA NSF-China, Ministry of Science and Technology Thank you!

IOP Publishing

Biofabrication Impact Factor: 4.302

Biofabrication: Use cells, biomaterials and bioactive compounds as building blocks through the means of physical, chemical, biological, and engineering processes to fabricate biological systems and/or therapeutical products.

Scope: biofabrication processes, process science, modeling and design, and applications to:

- Bioprinting of cells, tissues and organs
- Cell/Protein printing, patterning and assemblies
- Cell assemblies for disease, drug, and tissue substitute models
- Biochips, biosensors and cell-integrated microfluidic devices
- Tissue scaffolds, medical devices and Computer-aided tissue engineering
- Integrated bio/micro- and nano-fabrication
- Synthesis biology
- Others.....