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• Novel methods to control for unmeasured confounders
▫ Example of induction and the risk of autism



Healthcare utilization data

• Routinely collected for the payment and 
administration of health services
▫ Claims for services/procedures/medications

▫ Diagnoses used  to justify services

• Not collected primarily for research 
purposes



Publications in obstetrics based on 
healthcare utilization data

Source: Pubmed
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Advantages of healthcare utilization 
data

• Large
▫ Rare events
▫ Power to analyze subgroups

• Representative
▫ Real-world effectiveness and utilization patterns

• Informative regarding health systems
▫ Information on volume, hospital/physician characteristics, costs

• Accessible
▫ Data are available at low cost
▫ Near real-time



Available data sources

• Types: Longitudinal and episodic

• Longitudinal databases
▫ Claims for outpatient, inpatient, 

laboratory, imaging services, medication 
dispensing

• Examples:
� Medicaid Analytic eXtract (MAX)
� United Healthcare database
� Kaiser Permanente



• Episodic databases

• Information derived from single, inpatient 
encounter

• Examples:
▫ Nationwide Inpatient Sample

� 20% stratified-sample of all US hospitalizations

▫ State Inpatient Databases
� Complete claims for admissions from selected states

▫ Premier Perspective Database
� ~1/6 of all US hospitalizations; granular data on hospital charges

Available data sources
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� Nationwide Inpatient Sample

� 56 million deliveries

� Frequency: 1 in 12,000

� Leading etiology: Hemorrhage (40%)

� Post-arrest survival: 58.9%
Anesthesiology. 2014 Apr;120(4):810-8.



• Types of studies:

▫ Descriptive studies
� Disease/complication epidemiology
� Healthcare utilization

▫ Disease/complication risk prediction
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� United Healthcare 

� 534,500 pregnancies from 2005 to 2011

� 14.4% opioid exposed during pregnancy

� Significant regional variation

Anesthesiology. 2014 May;120(5):1216-24.
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� Medicaid Analytic eXtract

� 854,823; 1.2% severe morbidity

� Includes 20 maternal conditions

� Risk=0.68% for score 0; 10.9% if >10

Obstet Gynecol. 2013 Nov;122(5):957-65..



• Types of studies:

▫ Descriptive studies
� Disease/complication epidemiology
� Healthcare utilization

▫ Disease/complication risk prediction

▫ Comparative effectiveness/safety research

Healthcare utilization data



Comparative effectiveness and safety 
research

• Gold standard à Randomized controlled clinical 
trials

▫ Lack problem of confounding

▫ May lack generalizability

▫ Less useful in establishing safety

▫ Limited follow-up time

▫ Not all relevant questions will be answered with RCTs
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Healthcare utilization data

• Challenges

• Those inherent to all observational research
▫ Selection bias
▫ Information bias
▫ Confounding bias

• Those particular to healthcare utilization data
▫ Strong potential for misclassification/underascertainment

of outcomes, exposures, and confounders



Study question

Exposure Outcome
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Challenges: Outcome misclassification

• Not as problematic as one might think…

• Important to define the outcome with specificity

▫ If the outcome is defined with 100% specificity, then 
relative risk estimates will be unbiased assuming that 
misclassification is non-differential

Kelsey et al, Methods in observational epidemiology (2nd edition). Oxford University Press, 1996
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Sensitivity (%) Specificity (%)

Obstetric 
hemorrhage 75 99.8

Episiotomy 70 99.9

Obstetric wound 
infection 68 98

Venous 
thromboembolism 87 98

Renal failure 88 99.4

Endometritis 46 98

Venous 
thromboembolism 87 98



Challenges: Outcome misclassification

• Specificity further improved with treatment codes 
or LOS

▫ Infection: Appropriate antibiotics
▫ PPH: Transfusion
▫ Severe preeclampsia: Magnesium
▫ MI:  LOS >3 days

� Kiyota et al, Am Heart J, 2004; 148: 99-104
� Shaklee et al, Infect Dis J 2011;30:e38-40



Challenges: Exposure misclassification

• Can often be measured with sensitivity and 
specificity
▫ Charges for drugs, procedures

• When the exposure is a diagnosis, 
misclassification may create bias of effect 
estimates



Challenges: Exposure misclassification

• Particularly problematic in episodic databases

▫ Overcoding:  Patient with peridelivery MI may 
have more codes for known risk factors than 
comparable patient without the complication

▫ Undercoding:  Patients that have a long and 
complicated hospital course may have fewer codes 
for chronic conditions
� DM paradoxically appears to decrease the risk 

peridelivery sepsis in administrative datasets



• Misclassification of or inability to measure 
confounders is the greatest threat to validity of 
studies using administrative data

Challenges: Confounder 
underascertainment/misclassification



• Minimize the degree of confounding at the design 
phase
▫ Use of active comparators

• Use proxies to identify relevant comorbidities
▫ Insulin à DM
▫ LabetalolàHTN
▫ Number of outpatient medications as a marker for 

general health status

Challenges: Confounder 
underascertainment/ misclassification



• Draws on range of data dimension including 
diagnoses, procedures, laboratory tests, and 
medications

• Empirically identifies candidate covariates from 
thousands of codes

• Prioritizes covariates, and integrates them into a 
propensity-score

• Improves confounding control in some 
circumstances



Statins and congenital malformations



Statins and congenital malformations

• Food and Drug Administration Category X
▫ Animal data showing the potential for toxicity 
▫ Role of cholesterol biosynthesis for prenatal 

development

• Few human data
▫ Mixed results
▫ Registries, small cohort studies, and spontaneous 

reports

• Important:
▫ Use in women of reproductive age
▫ Potential use in preventing preeclampsia



• Medicaid Analytic eXtract 2000-2007
▫ N = 886,996 
▫ 1,152 (0.13%) statin exposed in 1st trimester

• Outcome à Congenital malformations
▫ Defined by codes of 2 separate dates 
▫ One code + corrective surgery (high specificity)

• 50 covariates drawn from claims
▫ Demographics, diagnoses, medications, healthcare 

utilization (robust confounder control incld many proxies)

BMJ. 2015 Mar 17;350:h1035.
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Risk Unadjusted Stratified on 
diabetes 

Propensity-score 
matched (1:3)*

Unexposed 3.55% Referent Referent Referent

Exposed 6.34% 1.79 (1.43 to 2.23) 1.34(1.07 to 1.68) 1.04 (0.79 to 1.37)

Statins and congenital 
malformations



Novel design approaches to overcome 
residual confounding

• Circumstances where traditional designs are 
likely to result in residual confounding

• In this circumstance novel epidemiological 
designs are needed

• Example:  Induction of labor and autism



Background
Autism Spectrum Disorders (ASD):
• Permanent developmental disabilities
▫ Impairment in social interaction
▫ Language development
▫ Stereotyped or repetitive behaviors
▫ Incidence: 1 in 90

§Genetics and early environmental exposures implicated in 
pathophysiology
o Investigation of association with perinatal exposures

Gardener  et al. Pediatrics 2011;128:344-55
CDC. Morbidity and Mortality Weekly Report 2012;61:1-19



Background
Oxytocin:
• Key role in social function and cognition
• Used to induce/augment labor

Hypothesis: 
• In-utero exposure causes down-regulation of oxytocin 

receptors predisposing to ASD

Glasson et al. Arch Gen Psychiatry 2004;61:618-27
Wahl. Medical hypotheses 2004;63:456-60



§Linked information on 625,042 births to educational 
records

o Exposure: Induction
o Outcome: Autism exceptionality designation
o After adjustment for confounders:
• Relative risk: 1.27 (95% CI 1.05-1.52)





§ ACOG issued a Committee Opinion:
o “against a change in current guidance regarding 

counseling and indications for and methods of labor 
induction…”

§ Avoiding induction may lead to more stillbirth, 
cesareans,  and adverse effects on maternal health



• A significant concern regarding prior study is 
potential for residual  confounding

• Use Swedish nationwide population register data to 
identify differentially exposed siblings

JAMA Pediatr. 2016 Sep 6;170(9):e160965.



Methods

Study Population:
• Births in Sweden 1992 to 2001
• N=978,98

Exposure:
• Induction indicator on standardized delivery chart

Outcome:
• Diagnoses of Autism Spectrum Disorder
• 1.1%



Methods
Analysis:

• Association between induction and ASD modelled 
using  Cox proportional hazard regression

• Models:
▫ Model 1: Baseline
▫ Model 2: Stable maternal characteristics: 

Demographics
▫ Model 3: Model 2+ individual birth characteristics: 

Risk factors for induction like postdates, 
preeclampsia, etc



Methods
Model 4:

• Fixed effects model in which the underlying hazard is 
allowed to vary between mothers (=fixed for all births to 
same woman)
• Contrast is made within siblings
▫ Only siblings discordant with respect to induction 

status contribute to the estimation of effect
• Maintain adjustment for factors unique to each birth

• Controls for all factors shared by siblings 
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Results

Baseline Stable 
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Results

Baseline Stable 
maternal 

Individual 
birth Within siblings

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Autism 
spectrum 
disorders

1.27 (1.19 - 1.37) 1.27 (1.18 - 1.36) 1.18 (1.09 - 1.27) 1.05 (0.87 - 1.27)



Conclusions
• Big data are a powerful tool for research in OB and 

OB anesthesia

• Attention to study design and limitations of data 
needed

• Novel approaches can help minimize the risk for 
residual confounding and yield valid estimates




