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The	Need	for	Identifying	Patients	At	Risk
More	than	230	million	major	surgical	procedures	are	performed	annually1

Overall	mortality	rate	is	less	than	2%2,3

10%	of	surgical	population	at	high	risk,	but	80%	of	postoperative	deaths2,3

Less	than	15%	of	high	risk	surgical	patients	are	admitted	to	the	ICU3



Postoperative	Risk	Scores

◦ 1	=	healthy	and	5	=	not	
expected	to	live	24	hours

◦ Overall	health
◦ Preoperative

◦ Risk	of	postoperative	
complication	and	poor	
outcome

◦ Developed	on	~300	
patients

◦ EBL,	lowest	MAP,	and	
lowest	HR

ASA	Score4
1963

Surgical	Apgar	
Score5
2007

◦ Preoperative	score	to	
predict	post	operative	
mortality

◦ Developed	on	>2	million	
patients

◦ 17	preoperative	variables	
(such	as	age,	presence	of	
heart	disease,	surgery	type)

POSPOM7

2016

Risk	
Quantification	

Index6
2011

◦ Risk	of	30	day	
morbidity	and	
mortality

◦ Developed	on	
~635,000	patients

◦ CPT	code	of	the	
performed	primary	
procedure,	ASA,	
AGE

◦ Score	+	Probability	
of	outcome



Limitations
ASA is subjective

ASA, POSPOM, and RQI are limited to preoperative information

RQI depends on Procedural Severity Score (PSS)

Surgical Apgar score has been shown to have limited accuracy8

Adding Surgical Apgar to RQI to leverage both preoperative and intraoperative information does
not significantly improve prediction of mortality9



Aim	of	Study
Predict	inhospital mortality	in	surgical	patients	by	using	deep	neural	network	models	(DNNs)	
and	intraoperative	features
◦ Compare	DNNs	to	ASA,	SAS,	RQI,	POSPOM,	and	logistic	regression
◦ Assess	DNN	with	a	reduced	feature	set
◦ Assess	DNN	with	addition	of	ASA
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Hyperparameters
◦ Number	of	neurons
◦ Number	of	hidden	layers
◦ Batch	size

◦ Epoch	=	all	training	samples	have	been	“seen”	and	
weights	updated	accordingly

◦ Activation	function
◦ Learning	rate
◦ Regularization	parameters



Data	Description	
Inclusion	Criteria:
◦ All	surgical	procedures	performed	since	March	1,	
2013	with	general	anesthesia	at	UCLA

Exclusion	Criteria:
◦ No	general	anesthesia
◦ >	89	years	or	<	18	years	of	age
◦ For	patients	with	>1	procedure,	only	the	first	
procedure	was	included	

N	=	59,985	patients
◦ 80%	Train	and	20%	Test

87	features	calculated/extracted	at	the	end	of	
surgery	
◦ Descriptive	intraoperative	vital	signs
◦ Summary	of	drugs	and	fluids	interventions	
◦ Patient	anesthesia	descriptions

Train Test

#	of	Patients 47,988 11,997

#	of	Patients	with	In	
Hospital	Mortality	(%) 389	(0.81%) 87	(0.73%)

Age	(yrs) 56	± 17 56	± 18

EBL	(cc) 95	± 540 94	± 410

Presence	of	Arterial	
Line	(%) 17.9 17.8

Presence	of	PA	Line	(%) 3.4 0.9

Presence	of	Central	
Line	(%) 5.1 1.3

ASA	(%)

1 6.3 1.6

2 37.4 9.3

3 49.9 12.5

4 6.1 1.5

5 0.3 0.1

6 0.01 0



CPT	Code #	Patients CPT_DESCRIPTION

43239 304 Esophagogastroduodenoscopy

45380 230 Colonoscopy

43259 225 Esophagogastroduodenoscopy

50360 193 Renal	allotransplantation,	implantation	of	graft;	without	recipient	
nephrectomy

47562 190 Laparoscopy,	surgical;	cholecystectomy

43242 181 Esophagogastroduodenoscopy

27447 162 Arthroplasty,	knee,	condyle	and	plateau

27130 153 Arthroplasty,	acetabular	and	proximal	femoral	prosthetic	replacement	
(total	hip	arthroplasty)

59841 149 Induced	abortion,	by	dilation	and	evacuation

60500 144 Parathyroidectomy or	exploration	of	parathyroid(s)

44970 127 Laparoscopy,	surgical,	appendectomy

55866 126 Laparoscopy,	surgical	prostatectomy

61510 106 Craniectomy,	trephination,	bone	flap	craniotomy

38724 103 Cervical	lymphadenectomy	(modified	radical	neck	dissection)

Top	CPT	Codes	
(#	Patients	>	100)
1,498	unique	CPT	codes	

167	unique	HCUP	codes



87	Model	Features
SBP min,	max,	avg,	med,	std
DBP min,	max,	avg,	med,	std
MAP min,	max,	avg,	med,	std
HR min,	max,	avg,	med,	std
Pulse	Ox min,	max,	avg,	med,	std
SBP	of	the	last	10	minutes	of	the	case min,	max,	avg,	med,	std
DBP	of	the	last	10	minutes	of	the	case min,	max,	avg,	med,	std
MAP	of	the	last	10	minutes	of	the	case min,	max,	avg,	med,	std
HR	of	the	last	10	minutes	of	the	case min,	max,	avg,	med,	std
Pulse	Ox	of	the	last	10	minutes	of	the	case min,	max,	avg,	med,	std
Current	Rate	of	Phenylephrine
Current	Rate	of	Vasopressin
Current	Rate	of	Epinephrine
Current	Rate	of	Milrinone
Current	Rate	of	Nitroglycerin
Current	Rate	of	Esmolol
Current	Rate	of	Nitroprusside
Current	Rate	of	Nicardipine
Maximum	Glucose	for	the	Case
Minimum	Glucose	for	the	Case

Nitric	Oxide	Used	for	the	Case
Presence	of	invasive	central,	radial,	or	pulmonary	
arterial	line
Total	Red	Blood	Cells	Transfused
Total	Urine	Output
Cumulative	minutes	with	MAP<60
Cumulative	minutes	with	MAP<50
Total	bolus	dose	of	phenylephrine
Highest	infusion	rate	of	phenylephrine	during	the	case
Total	bolus	dose	of	ephedrine
Total	bolus	dose	of	vasopressin
Highest	infusion	rate	of	vasopressin	during	the	case
Total	bolus	dose	of	Epinepheine
Highest	infusion	rate	of	epinephrine	during	the	case
Highest	infusion	rate	of	milrinone during	the	case
Total	bolus	does	of	nitroglycerin	during	case
Highest	infusion	rate	of	nitroglycerin	during	the	case
Total	bolus	dose	of	Esmolol	during	the	case
Highest	infusion	rate	of	esmolol	during	the	case
Highest	infusion	rate	of	nitroprusside	during	the	case
Highest	infusion	rate	of	nicardipine	during	the	case
Minimum	Hemoglobin	during	the	case
Maximum	MAC	of	isoflurane	during	the	case	(note	this	
is	not	age	adjusted)
Maximum	MAC	of	sevoflurane during	the	case	(note	
this	is	not	age	adjusted)
Maximum	MAC	of	desflurane during	the	case	(note	this	
is	not	age	adjusted)



Methods:	Summary

Data	Preprocessing
◦ Missing	values	filled	
with	mean	values

◦ Values	clinically	out	of	
range	filled	with	
clinically	normal	values

◦ Train	data	features	
rescaled	to	have	a	
mean	of	0	and	standard	
deviation	of	1

59,985	patients
87	features

80%	Train 20%	Test

Data	Preprocessing

Train	DNNs	with	5	Fold	Cross	
Validation

Choose	best	DNN	
hyperparameters and	

architecture

Train	DNN	on	all	train	data

Data	Preprocessing

Test	DNN



Methods:	Model
Feedforward networks	with	fully	connected	layers	and	a	sigmoid	output

Trained	using	stochastic	gradient	descent	(SGD)	with	momentum	and	a	batch	size	of	200.

Trained	4	DNN	models	using
1. All	87	features
2. Reduced	feature	set	of	46	features

◦ This	reduced	feature	set	was	created	by	excluding	any	average,	median,	standard	deviation,	and	last	10	minutes	of	the	surgical	case	features.	
3. 87	original	features	+	ASA	=	88	features
4. 46	reduced	features	+	ASA	=	47	features

Model	performance	was	assessed	with	AUC

For	comparison,	the	AUCs	of	logistic	regression	(87	features),	ASA,	Surgical	Apgar,	RQI,	and	POSPOM	were	also	
calculated.
◦ ASA	and	POSPOM	provided	by	UCLA
◦ Surgical	Apgar	calculated	using	Gawande et	al.5
◦ RQI	could	not	be	calculated	using	published	R	model	from	Cleveland	Clinic’s	website	[1]	due	to	technical	issues	with	R	version
◦ RQI	log	probability	and	score	calculated	from	Sigakis et	al.12

[1]	http://my.clevelandclinic.org/departments/anesthesiology/depts/outcomes-research/risk-quantification



Methods:	Training	Data	Augmentation

% Occurrence Data Augmentation Augmented	%	
Occurrence

Inhospital Mortality 0.81 100x 45

Prior	to	training,	positive	training	examples	were	augmented	by	adding	Gaussian	noise	with	a	standard	
deviation	of	0.0001



Methods:	Dealing	with	Overfitting

Solutions:
Collect	more	data

http://cs231n.github.io/assets/nn3/accuracies.jpeg



Methods:	Dealing	with	Overfitting
Early	stopping10	with	a	patience	of	10	epochs
◦ Stops	training	when	validation	loss	starts	to	
increase

L2	weight	decay
◦ Penalize	squared	weights
◦ Keeps	weights	small	unless	error	derivative	is	big

Dropout11 applied	at	all	layers
◦ Neurons	are	removed	from	the	network	with	a	
specified	probability	during	training.	

◦ This	prevents	neurons	from	co-adapting	too	much.	

Early	
StoppingLoss

Epoch

Training	Loss
Validation	LossOverfitting

𝐶 = 𝐿 +	
𝜆
2(𝑤*+

*

𝐿 = 	−
1
𝑛	(𝑦 𝑙𝑜𝑔 𝑎 + 1 − 𝑦 𝑙𝑜𝑔( 1 − 𝑎)

6

Log	Loss	Function w/	L2	Regularization



Results:	Best	Neural	Network	Architecture	and	
Hyperparameters

Activation Output	
Activiation Initialization #	Hidden	

Layers #	Neurons L2	Weight	
Decay

Dropout	
Probability

Learning	
Rate Momentum

ReLu Sigmoid he_normal 4 [300,	300,	
300,	300] 0.0001 0.5 0.01 0.9



Results:	AUC

Risk	Score AUC	[95%	CI]

Surgical	Apgar 0.58	[0.52	- 0.64]

POSPOM	SCORE 0.74	[0.69	- 0.	78]

ASA 0.84	[0.81	- 0.87]
RQI	Log	Prob** 0.90	[0.87	- 0.93]
RQI	Score** 0.91	[0.87	- 0.94]

Model AUC		[95%	CI]
Logistic	Regression 0.86	[0.81	- 0.89]

DNN 0.88	[0.85	- 0.91]
DNN	w/	ASA 0.90	[0.87	- 0.93]

DNN	w/	Reduced	Feature	Set 0.89	[0.85	- 0.92]

BEST	DNN:
DNN	w/	Reduced	Feature	Set	

&	ASA
0.91	[0.88	- 0.93]

**It	should	be	noted	that	RQI	could	not	be	calculated	for	6,406	of	the	test	patients	due	to	lack	of	Procedural	Severity	Scores	for	their	CPT	codes.	



Results:	Boxplots

SAS	<	4:
50%	risk	of	major	
complications,	
including	a	14%	
mortality	rate5

ASA	=	3
Severe	systemic	

disease

POSPOM	<	20:	
probability	of	in-

hospital	mortality	<	
0.32%	

POSPOM	=	25	:	
1.37%

POSPOM	=	30	:	
5.65%7

RQI	log	prob >	10%:	
40-50%	of	30	day	

mortality6

RQI	score	=	40:	
~0.01%	predicted	
probability	of	30	
day	mortality
RQI	score	=	80:	

~0.05%	
RQI	score	=	110:	

~1%6



Results:	Choosing	Threshold	based	on	F1	Score

Our	DNN	has	the	highest	F1	Score.

Choosing	thresholds	based	on	best	F1	score	optimizes	true	negatives.

DNN	and	RQI	model	were	comparable.	

#	True	Negative #	False	Positive #	False	Negative #	True	Positive

Best	DNN	Model	
(n=11,997	all	test

patients)
11,875 35 72 15

Best	DNN	Model	
(n=5,591	RQI	Score	
Calculated	Patients)

5,540 13 32 6

RQI	Score	
(n=5,591	RQI	Score	
Calculated	Patients)

5,502 51 30 8

POSPOM
(n=11,997	all	test

patients)
10,782 1,128 56 31

POSPOM
(n=5,591	RQI	Score	
Calculated	Patients)

4,948 605 20 18

Best	DNN	
Threshold F1	Score RQI	

Score F1	Score POSPOM F1	Score

0.1 0.02 100 0.03 10 0.02

0.2 0.03 120 0.08 15 0.03

0.3 0.14 130 0.12 20 0.05

0.4 0.22 140 0.16 25 0.04

0.5 0.1 145 0.08 30 0.02

0.6 0.1 150 0.05 35 0



Results:	%	Mortality	by	Model

Best DNN	
Model #	Mortality

%	of	
Mortality	
Patients	
(n=87)

RQI	Score #	Mortality

%	of	
Mortality	
Patients	
(n=38)

POSPOM #	Mortality

%	of	
Mortality	
Patients	
(n=87)

0-0.1 2 2.3 0-100 1 2.63 0-10 6 6.9

0.1-.2 1 1.15 100-120 9 23.68 10-20 50 57.5

0.2-0.3 37 42.53 120-130 11 28.95 20-25 26 29.9

0.3-0.4 32 36.78 130-140 9 23.68 25-30 4 4.6

0.4-0.5 10 11.49 140-150 7 18.42 30-40 1 1.1

>=	0.5 5 5.75 150-160 1 2.63 >40 0 0

Set	0.2 as	threshold
97%	of	Mortality	Patients

Set	100 as	threshold
97%	of	Mortality	Patients

Set	10	as	threshold
93%	of	Mortality	Patients



Results:	Choosing	Threshold	Based	on	True	Positives
At	threshold	values:
◦ Best	DNN	:		0.2
◦ RQI	Score	:	100
◦ POSPOM	:	10

The	best	DNN	with	a	threshold	of	0.2	decreases	the	#	of	false	positives	compared	to	RQI	by	352	
patients,	while	comparably	labeling	true	positives.

#	True	Negative #	False	Positive #	False	Negative #	True	Positive

Best	DNN	Model	
(n=11,997	all	test patients) 6,680 5,230 3 84

Best	DNN	Model	
(n=5,591	RQI	Score	Calculated	Patients) 3,385 2,168 2 36

RQI	Score	
(n=5,591	RQI	Score	Calculated	Patients) 3,033 2,520 1 37

POSPOM
(n=11,997	all	test patients) 2,741 9,169 6 81

POSPOM
(n=5,591	RQI	Score	Calculated	Patients) 1,312 4,241 1 37



Conclusions
DNN	models	predict	inhospital mortality	better	or	comparably	to	currently	published	risk	scores

The	addition	of	ASA	and	reducing	the	number	of	features	improves	the	DNN	models

RQI	is	comparable	to	our	models,	but	can	only	be	calculated	on	~50%	of	patients

Our	models	can	be	calculated	on	all	patients	and	leverages	both	preoperative	and	intraoperative	
information

Future	Work:
◦ Testing	on	a	different	hospital’s	patient	population
◦ Leveraging	time	series	data	during	operation
◦ Patient	specific
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